首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Croplands contribute to atmospheric nitric oxide (NO), but very limited data are available about NO fluxes from intensively managed croplands in China. In this study, NO fluxes were measured in a typical vegetable field planted with flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee), which is the most widely cultivated vegetable in Guangdong province, south China. NO emission drastically increased after nitrogen fertilizer application, and other practices involving loosening the soil also enhanced NO emission. Mean NO emission flux was 47.5 ng N m−2 s–1 over a complete growth cycle. Annual NO emission from the vegetable field was about 10.1 kg N ha−1 yr−1. Fertilizer-induced NO emission factor was estimated to be 2.4%. Total NO emission from vegetable fields in Guangdong province was roughly estimated to be 11.7 Gg N yr−1 based on the vegetable field area and annual NO emission rate, and to be 13.3 Gg N yr−1 based on fertilizer-induced NO emission factor and background NO emission. This means that NO emission from vegetable fields was approximately 6% of NOx from commercial energy consumption in Guangdong province.  相似文献   

3.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   

4.
Nitrous oxide (N2O) emissions from a typical greenhouse vegetable system in Northern China were measured from February 2004 to January 2006 using a close chamber method. Four nitrogen management levels (NN, MN, CN, and SN) were used. N2O emissions occurred intermittently in the growing season, strongly correlating with N fertilization and irrigation. No peak emissions were observed after fertilization in the late Autumn season due to low soil temperature. 57-94% of the seasonal N2O emissions came from the initial growth stage, corresponding to the rewetting process in the soil. The annual N2O emissions ranged from 2.6 to 8.8 kg N ha−1 yr−1, accounting for 0.27-0.30% of the annual nitrogen input. Compared with conventional N management, site-specific N management reduced N fertilization rate by 69% in 2004 and by 76% in 2005, and consequently reduced N2O emissions by 51% in 2004 and 27% in 2005, respectively.  相似文献   

5.
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3 were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops.  相似文献   

6.

The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m−2 year−1), low-N (N1: 5 g N m−2 year−1), medium-N (N2: 10 g N m−2 year−1), and high-N (N3: 15 g N m−2 year−1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3–5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the “priming” effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  相似文献   

7.
8.
Agricultural soils may account for 10% of anthropogenic emissions of NO, a precursor of tropospheric ozone with potential impacts on air quality and global warming. However, the estimation of this biogenic source strength and its relationships to crop management is still challenging because of the spatial and temporal variability of the NO fluxes.Here, we present a combination of new laboratory- and field-scale methods to characterise NO emissions and single out the effects of environmental drivers.First, NO fluxes were continuously monitored over the growing season of a maize-cropped field located near Paris (France), using 6 automatic chambers. Mineral fertilizer nitrogen was applied from May to October 2005. An additional field experiment was carried out in October to test the effects of N fertilizer form on the NO emissions. The automatic chambers were designed to measure simultaneously the NO and N2O gases. Laboratory measurements were carried out in parallel using soil cores sampled at same site to test the response of NO fluxes to varying soil N–NH4 and water contents, and temperatures. The effects of soil core thickness were also analysed.The highest NO fluxes occurred during the first 5 weeks following fertilizer application. The cumulative loss of NO–N over the growing season was estimated at 1.5 kg N ha?1, i.e. 1.1% of the N fertilizer dose (140 kg N ha?1). All rainfall events induced NO peak fluxes, whose magnitude decreased over time in relation to the decline of soil inorganic N. In October, NO emissions were enhanced with ammonium forms of fertilizer N. Conversely, the application of nitrate-based fertilizers did not significantly increase NO emissions compared to an unfertilized control. The results of the subsequent laboratory experiments were in accordance with the field observations in magnitude and time variations. NO emissions were maximum with a water soil content of 15% (w w?1), and with a NH4–N content of 180 mg NH4–N kg soil?1. The response of NO fluxes to soil temperature was fitted with two exponential functions, involving a Q10 of 2.0 below 20 °C and a Q10 of 1.4 above. Field and laboratory experiments indicated that most of the NO fluxes originated from the top 10 cm of soil. The characterisation of this layer in terms of mean temperature, NH4 and water contents is thus paramount to explaining the variations of NO fluxes.  相似文献   

9.
The present study aimed to investigate the NH3 volatilization loss from field-applied compost and chemical fertilizer and evaluate the atmosphere–land exchange of NH3 and particulate NH4+ (pNH4) at an upland field with volcanic ash soil (Andosol) in Hokkaido, northern Japan. Two-step basal fertilization was conducted on the bare soil surface. First, a moderately fermented compost of cattle manure was applied by surface incorporation (mixing depth, 0–15 cm) at a rate of 117 kg N ha−1 as total nitrogen (T-N) corresponding to 9.9 kg N ha−1 as ammoniacal nitrogen (NH4–N). Twelve days later, a chemical fertilizer containing 10% (w/w) of NH4–N as a mixture of ammonium sulfate and ammonium phosphates was applied by row placement (cover depth, 3 cm) at a rate of 100 kg N ha−1 as NH4–N. The study period was divided into the first-half, beginning after the compost application (CCM period), and the second-half, beginning after the chemical fertilizer application (CF period). The mean air concentrations of NH3 and pNH4 (1.5 m height) were 7.6 and 3.0 μg N m−3, respectively, in the CCM period; the values were 3.7 and 3.9 μg N m−3, respectively, in the CF period. The composition ratios of NH3 to the sum of NH3 and pNH4 (1.5 m height) were 72% and 49% in the CCM and CF periods, respectively. The NH3 volatilization loss from the compost was 0.8% of the applied T-N (or 9.3% of the applied NH4–N) and that from the chemical fertilizer was near zero. Excluding the period immediately after the compost application, the upland field acted as a net sink for NH3 and pNH4.  相似文献   

10.
11.
Mercury (Hg) concentration profiles and historical accumulation rates were determined in three 210Pb-dated cores from a peat deposit in the vicinity of a lead (Pb) smelter at Příbram, Czech Republic. The Hg concentrations in peat samples ranged from 66 to 701 μg kg−1. Cumulative Hg inventories from each core (for the past 150 yr) varied by a factor of 1.4 (13.6–18.5 mg Hg m−2), indicating variations of net Hg accumulation rate within the peat deposit. Historical changes in vegetation cover (leading to variable interception by trees) are probably responsible for this variation in space and time. The uncorrected Hg accumulation rates peaked between the 1960s and 1980s (up to 226 μg m−2 yr−1). Recent findings show that Hg records from peat tend to overestimate historical levels of Hg deposition. Therefore we used the mass loss compensation factor (MLCF) to normalize Hg accumulation rates. These corrected Hg accumulation rates were significantly lower (maximum 129 μg m−2 yr−1) and better corresponded to changes in historical smelter emissions, which were highest in the 1960s. The agreement between the corrected Hg accumulation rates in the uppermost peat sections (2–38 μg m−2 yr−1) and biomonitoring of atmospheric deposition by mosses in several recent years (4.7–34.4 μg m−2 yr−1) shows the usefulness of MLCF application on Hg accumulation in peat archives. However, the MLCF correction was unsuitable for Pb. The recent Pb deposition rates obtained by an independent biomonitoring study using mosses (0.5–127 mg m−2 yr−1) were better correlated with net Pb accumulation rates recorded in peat (7–145 mg m−2 yr−1) than with corrected rates obtained by the MLCF approach (1–28 mg m−2 yr−1).  相似文献   

12.
13.
14.
15.
16.
17.
An automated system for continuous measurement of N2O fluxes on an hourly basis was employed to study N2O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N2O emissions occurred mainly within two weeks of application of NH4+-based fertilizer and total N2O emissions in wheat (average 0.35 or 0.21 kg N ha−1 season−1) and maize (average 1.47 or 0.49 kg N ha−1 season−1) under conventional and optimum N fertilization (300 and 50-122 kg N ha−1, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N2O was produced mainly from nitrification of NH4+-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N2O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH4+- to NO3ˉ-based fertilizers.  相似文献   

18.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

19.
20.
NOX fluxes from three kinds of vegetable lands and a rice field were measured during summer–autumn in the Yangtze Delta, China. The average NO fluxes from the rice fields (RF), celery field (CE), maize field (MA) and cowpea field (CP) were 4.1, 30.8, 54 and 32.2 ng N m?2 s?1, respectively; and the average NO2 fluxes were ?2.12, 0.68, 1.33 and 0.5 ng N m?2 s?1, respectively. The liquid N fertilizer (the mixture of swine excrement and urine) which is widely applied to vegetable lands by Chinese farmers was found to quickly stimulate NO emission, and have significant contribution to NO emission from the investigated vegetable lands. Apparent linearity correlations were found between NO2 fluxes and the ambient concentrations of the rice fields, with a compensation point of about 2.84 μg m?3. Total emissions of NO during summer–autumn time from this area were roughly estimated to be 4.1 and 8.4 Gg N for rice field and vegetable lands, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号