首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

2.
Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg?1, with a mean of 0.64 mg kg?1, of which 57.5 % exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4 %. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg?1, with a mean of 0.24 mg kg?1. A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r?=?0.770, ρ?<?0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg?1, with a mean of 0.46 mg kg?1. The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6 %; that with Cd exceeding 1 mg kg?1, called as “Cd rice,” reaches 11.1 %. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r?=?0.177, ρ?<?0.05) but not significantly with T-Cd in the soils (r?=?0.091, ρ?>?0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day?1 person?1 on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.  相似文献   

3.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

4.
The Fusaro Lagoon is a shallow lagoon, located in SW Italy, largely influenced in the last decades by several anthropic impacts. The study examined the pollution status of the lagoon, during year 2011–2012 at nine sampling stations with the aim to find out proper measurements of water lagoon restoration. Concentrations of heavy metals (HMs) (aluminium [Al], barium [Ba], cadmium [Cd], copper [Cu], iron [Fe], manganese [Mn], vanadium [V] and zinc [Zn]) were examined in water, sediments and specimens of the ascidian Ciona intestinalis sp. A. Low levels of dissolved oxygen concentration were detected at many stations, with mean values of 5.2–6.4 mg L?1. The redox potential of surface waters was also low, ?2.7 to 50.7 mV. Sediments possessed high organic matter content, 17.7–29.4 %. In sediments, the mean Zn level, 251.4 mg kg?1, was about sixfold higher than that recorded in year 2000 (38.5 mg kg?1) and considerably higher than that recorded in 2007 (191 mg kg?1). The mean levels of Cd were outstandingly high, with a mean value of 70.5 mg kg?1, about 30- and 50-fold higher than those determined in 2000 and 2007, respectively. Cadmium (Cd), Cu and nickel (Ni) appeared in excess with respect to most current guidelines, reaching significant pollution levels. C. intestinalis sp. A was detected only at few stations, with metals accumulated preferentially in the body in respect to the tunic, from 1.2 times for Zn (178 mg kg?1) to 4.0 times for V (304 mg kg?1). Data suggests the necessity of an immediate action of eco-compatible interventions for environmental restoration.  相似文献   

5.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

6.
Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg?1, 102 mg kg?1, 185 mg kg?1, 154 mg kg?1 and 1040 mg kg?1 of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.  相似文献   

7.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

8.
In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg?1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg?1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg?1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg?1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground biomass of barnyard grass. Remediation should occur through phytostabilization. Thus, with its strong adaptability and lush growth, barnyard grass can be applied as a pioneer species for the phytoremediation of Cd- and Pb-contaminated soils.  相似文献   

9.
In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg?1, respectively, at the soil Cd concentration of 50 mg kg?1. Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.  相似文献   

10.
The study was designed to investigate the content and distribution of selected heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Fe, Pb and Zn) in samples of fruticose macrolichen Usnea antarctica from James Ross Island. A special emphasis was devoted to mercury and its species (elemental mercury and methylmercury). It was found that mercury contents were relatively high (up to 2.73 mg kg?1 dry weight) compared to other parts of the Antarctic Peninsula region, while the concentrations of most other elements were within reported ranges. Mercury contents in lichens originating from the interior were higher than those from the coast, which is probably the result of local microclimate conditions. Similar trends were observed for Hg0 and MeHg+, whose contents were up to 0.14 and 0.098 mg kg?1 dry weight, respectively. While mercury did not show a significant correlation with any other element, the mutual correlation of some litophile elements probably refers to the influence on thalli of resuspended weathered material. The influence of habitat and environmental conditions could play an essential role in the bioaccumulation of contaminants rather than just the simple presence of sources. Thus, the study of the thalli of this species can bring a new perspective on the interpretation of contaminant accumulation in lichens of the polar region.  相似文献   

11.
Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg?1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg?1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg?1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.  相似文献   

12.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

13.
The major objective of this investigation was to evaluate the potential of scented geraniums, Pelargonium roseum, to uptake and accumulate heavy metals nickel (Ni), cadmium (Cd), or lead (Pb). For this, plants were grown in an artificial soil system and exposed to a range of metal concentrations over a 14-day treatment period. Then, metals from the entire biomass were extracted. The results showed that scented geranium plants accumulated in excess of 20,055 mg of Ni kg?1 dry weight (DW) of root and 10,889 mg of Ni kg?1 DW of shoot, and in excess of 86,566 mg of Pb kg?1 DW for roots and 4,416 mg of Pb kg?1 DW for shoots within 14 days. Also, the uptake and accumulation of cadmium in roots of scented geranium plants increased with the exposure at low (250, 500 mg?L?1) and medium level (750 mg?L?1) followed by a decline at the highest level (1,000 mg?L?1). The highest accumulation in roots (31,267 mg?kg?1 DW) was observed in 750 mg?L?1 cadmium treatment. In the shoots of scented geraniums, the highest amount of metal accumulation (1,957 mg?kg?1 DW) was detected at 750 and 1,000 mg?L?1 of cadmium in the culture solution. Finally, since the high concentrations of Ni or Pb accumulated in shoots of scented geranium has far exceeded 0.1 % DW and for Cd has far exceeded 0.01 % DW, P. roseum is a new hyperaccumulator species for these metals and can be used in phytoremediation industry.  相似文献   

14.
Concentrations of Cd, Cu, Fe, Pb, and Zn were measured in the samples of street dust and surface roadside soil before Jordan switched to unleaded fuel usage. The samples were collected from Petra, the most tourist-attractive site in Jordan. The samples were analyzed for heavy metals by atomic absorption spectrophotometry. Our results show that the distribution of metals in the soil samples is affected by wind direction in the investigated area. The highest level of metals was found in the eastern parts of the roads due to the westerly-dominant wind in the studied area. The contamination levels of metals decrease as the distance from the edge of the road increases. In the roadside soil samples, the means for the concentrations of the metals at 1 m from the east side of the main road are 1.0, 19.1, 3791.4, 177.0, and 129.0 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In the samples of street dust, the means of the concentrations of the metals in the investigated area are 9.7, 11.8, 4694.4, 31.6, and 24.8 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In conclusion, the lithogenic origins (traffic emissions) are responsible for the diffusion of these metals in the studied region.  相似文献   

15.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

16.
We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4 2?), nitrate (NO3 2?), ammonium (NH4 +), sulphate (SO4 2?), lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), aluminium (Al3+), and copper (Cu2+) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12–26.5 °C; pH 5.96–8.45; turbidity 0.53–18.8 NTU; EC 15.8–5180 mS m?1; BOD5 0.60–7.32 mg L?1; COD 10.5–72.9 mg L?1; PO4 2??<?500–2,460 μg L?1; NO3 2? <0.05–4.21 mg L?1; NH4 +?<?0.5–1.22 mg L?1; SO4 2? 3.90–2,762 mg L?1; Pb2+ 0.023–0.135 mg L?1; Hg2+ 0.0122–0.1231 mg L?1 Cd2+ 0.068–0.416 mg L?1; Al3+ 0.037–1.875 mg L?1, and Cu2+0.006–0.144 mg L?1. The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.  相似文献   

17.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

18.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

19.
To assess metal mobility in pruning waste and biosolids compost (pH?6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g?L?1, pH?2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7?±?0.1–3.3?±?0.1 mg?kg?1), Fe (49.2?±?5.2–76.8?±?6.8 mg?kg?1), and Mn (7.2?±?1.1–11.4?±?0.7 mg?kg?1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4?±?0.3–42.2?±?2.9 mg?kg?1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.  相似文献   

20.
The pre-harvest residue limit (PHRL) of abamectin (abamectin B1a and B1b) in Perilla frutescens leaves grown under greenhouse conditions were investigated using high-performance liquid chromatography with a fluorescence detector. Samples were extracted with acetonitrile. The extract was purified through a solid phase extraction procedure. Then the purified extract was derivatized with trifluoroacetic anhydride and N-methylimidazole to form a strong stable fluorescent derivative of abamectin. Finally, derivatized abamectins were conveyed to the detector via an Atlantis C18 column, with water and methanol as a mobile phase. Calibration curves were linear over the calibration ranges with coefficients of determinants r 2?≥?0.999. The limits of detection and quantification were 0.0033 and 0.01 mg kg?1 for abamectin B1a and B1b, respectively. Recovery was assessed in a control matrix at two different fortification concentrations, with three replicates for each concentration. Good recoveries were obtained for the target analytes and ranged from 82.11 to 93.03 %, with relative standard deviations of less than 8 %. The rate of disappearance of total abamectin on perilla leaves for recommended and double the recommended doses was described as first-order kinetics with a half-life of 0.7 days. Using the PHRL curve, we could predict the residue level of total abamectin to be 0.92 mg kg?1 at 7 days before harvest or 0.26 mg kg?1 at 4 days before harvest, which would be below the provisional MRL designed by the Korea Food and Drug Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号