首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In numerous studies, spatial and spectral aggregations of pixel information using average values from imaging spectrometer data are suggested to derive spectral indices and the subsequent vegetation parameters that are derived from these. Currently, there are very few empirical studies that use hyperspectral data, to support the hypothesis for deriving land surface variables from different spectral and spatial scales. In the study at hand, for the first time ever, investigations were carried out on fundamental scaling issues using specific experimental test flights with a hyperspectral sensor to investigate how vegetation patterns change as an effect of (1) different spatial resolutions, (2) different spectral resolutions, (3) different spatial and spectral resolutions as well as (4) different spatial and spectral resolutions of originally recorded hyperspectral image data compared to spatial and spectral up- and downscaled image data. For these experiments, the hyperspectral sensor AISA-EAGLE/HAWK (DUAL) was mounted on an aircraft to collect spectral signatures over a very short time sequence of a particular day. In the first experiment, reflectance measurements were collected at three different spatial resolutions ranging from 1 to 3 m over a 2-h period in 1 day. In the second experiment, different spectral image data and different additional spatial data were collected over a 1-h period on a particular day from the same test area. The differently recorded hyperspectral data were then spatially and spectrally rescaled to synthesize different up- and down-rescaled images. The normalised difference vegetation index (NDVI) was determined from all image data. The NDVI heterogeneity of all images was compared based on methods of variography. The results showed that (a) the spatial NDVI patterns of up- and downscaled data do not correspond with the un-scaled image data, (b) only small differences were found between NDVI patterns determined from data recorded and resampled at different spectral resolutions and (c) the overall conclusion from the tests carried out is that the spatial resolution is more important in determining heterogeneity by means of NDVI than the depth of the spectral data. The implications behind these findings are that we need to exercise caution when interpreting and combining spatial structures and spectral indices derived from satellite images with differently recorded geometric resolutions.  相似文献   

2.
3.
Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R 2 = 0.63); LAI versus SR (R 2 = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km2 of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.  相似文献   

4.
The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (~1.9 pixels cm?2, ~1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.  相似文献   

5.
Vegetation is commonly monitored to improve efficiency of various agricultural practices. Spatial and temporal changes in plant growth and development can be monitored with the aid of remote sensing techniques employing ground, aerial, and satellite platforms. Unmanned aerial vehicles (UAV) and multi-spectral cameras developed for UAVs have an important potential for agricultural management activities with high-resolution spatial and temporal images. However, UAV images should be assessed based on ground measurements for using these images as a decision-support tool in agriculture. This study was conducted to estimate sunflower leaf area index (LAI) and yield with the aid of Normalized Difference Vegetation Index (NDVI) images generated from raw UAV images. Furthermore, UAV-based NDVI values were compared with NDVI values calculated by using hyper-spectral measurements carried out with a ground-based spectroradiometer. Between July and August of 2017, six flight missions were conducted and spectral measurements were made simultaneously. A significant correlation (R2?=?0.77) was determined between NDVI values that belong to UAV platform and spectroradiometer. Also, regression models developed for sunflower LAI and yield estimation depending UAV-based NDVI have R2 values of 0.88 and 0.91, respectively.  相似文献   

6.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

7.
水生植被在湖库生态系统中发挥稳定沉积物、净化水质、平衡水生生态系统等作用,监测水生植被变化对湖库生态环境的监测具有重要意义。梳理了国内外利用高光谱、多光谱光学卫星遥感数据提取湖库水生植被的方法,尤其是针对其中涉及的阈值确定问题进行总结分析,介绍了典型研究区水生植被时空分布和变化以及与水质的关系,最后给出一些水生植被遥感监测的展望。  相似文献   

8.
The major decrease in grassland surfaces associated with changes in their management that has been observed in many regions of the earth during the last half century has major impacts on environmental and socio-economic systems. This study focuses on the identification of grassland management practices in an intensive agricultural watershed located in Brittany, France, by analyzing the intra-annual dynamics of the surface condition of vegetation using remotely sensed and field data. We studied the relationship between one vegetation index (NDVI) and two biophysical variables (LAI and fCOVER) derived from a series of three SPOT images on one hand and measurements collected during field campaigns achieved on 120 grasslands on the other. The results show that the LAI appears as the best predictor for monitoring grassland mowing and grazing. Indeed, because of its ability to characterize vegetation status, LAI estimated from remote sensing data is a relevant variable to identify these practices. LAI values derived from the SPOT images were then classified based on the K-Nearest Neighbor (KNN) supervised algorithm. The results points out that the distribution of grassland management practices such as grazing and mowing can be mapped very accurately (Kappa index?=?0.82) at a field scale over large agricultural areas using a series of satellite images.  相似文献   

9.
Satellite-based remote sensing offers great potential for frequent assessment of forest cover over broad spatial scales, however, calibration and validation using ground-based surveys are needed. In this study, forest cover estimates for the United States from a recently developed land surface cover map generated from satellite remote sensing data were compared to state-level inventory data from the U.S. National Resources Planning Act Timber Database. The land cover map was produced at the U.S. Geological Survey EROS Data Center and is based on imagery from the AVHRR sensor (spatial resolution 1.1 km). Vegetation type was classified using the temporal signal in the Normalized Difference Vegetation Index derived from AVHRR data. Comparisons revealed close agreement in the estimate of forest cover for extensively forested states with large polygons of relatively similar vegetation such as Oregon. Larger forest cover differences were observed in other states with some regional patterns in the level of agreement apparent.Comparisons in inventory- and remote sensing-based estimates of current forested area with potential vegetation maps indicated the magnitude of past land use change and the potential for future changes. The remote sensing approach appears to hold promise for conducting surveys of forest cover where inventory data are limited or where rates of vegetation change, due to human or climatic factors, are rapid.  相似文献   

10.
The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T s) from MODIS 8-day composite data during cloud-free period (September–October) were adopted to construct an NDVI–T s space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.  相似文献   

11.
长时间地表植被指数变化序列构建与分析是生态环境监测领域的重要内容。以我国生态工程建设重点地区——黄土高原为研究区,采用时间序列的方差匹配方法,融合了2套卫星遥感的归一化植被指数(NDVI)数据产品(GIMMS 3g和MODIS),建立了覆盖1982—2022年的黄土高原暖季(5—9月)NDVI数据集,揭示了其间黄土高原植被覆盖变化的时空特征。研究发现:黄土高原暖季NDVI呈现“先慢后快”的增加趋势,转折点大致出现在2002年,1982—2002年暖季NDVI增速仅为0.01/(10 a),2003—2022年增速高达0.06/(10 a),其中十八大以来增速尤为显著;暖季NDVI快速增加区域主要位于黄土高原中部,并向东北、西南方向延展,与“退耕还林(草)”重点区域范围基本一致;在黄土高原南部、东部和青海省东部一带,暖季NDVI呈缓慢下降趋势。过去40年间黄土高原NDVI增加与生态工程建设关系密切。  相似文献   

12.
13.
Both the net primary productivity (NPP) and the normalized difference vegetation index (NDVI) are commonly used as indicators to characterize vegetation vigor, and NDVI has been used as a surrogate estimator of NPP in some cases. To evaluate the reliability of such surrogation, here we examined the quantitative difference between NPP and NDVI in their outcomes of vegetation vigor assessment at a landscape scale. Using Landsat ETM+ data and a process model, the Boreal Ecosystem Productivity Simulator, NPP distribution was mapped at a resolution of 90 m, and total NDVI during the growing season was calculated in Heihe River Basin, Northwest China in 2002. The results from a comparison between the NPP and NDVI classification maps show that there existed a substantial difference in terms of both area and spatial distribution between the assessment outcomes of these two indicators, despite that they are strongly correlated. The degree of difference can be influenced by assessment schemes, as well as the type of vegetation and ecozone. Overall, NDVI is not a good surrogate of NPP as the indicators of vegetation vigor assessment in the study area. Nonetheless, NDVI could serve as a fairish surrogate indicator under the condition that the target region has low vegetation cover and the assessment has relatively coarse classification schemes (i.e., the class number is small). It is suggested that the use of NPP and NDVI should be carefully selected in landscape assessment. Their differences need to be further evaluated across geographic areas and biomes.  相似文献   

14.
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial–temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial–temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.  相似文献   

15.
Remote sensing has been used since the 1980s to study parameters in relation with coastal zones. It was not until the beginning of the twenty-first century that it started to acquire imagery with good temporal and spectral resolution. This has encouraged the development of reliable imagery acquisition systems that consider remote sensing as a water management tool. Nevertheless, the spatial resolution that it provides is not adapted to carry out coastal studies. This article introduces a new methodology for estimating the most fundamental physical property of intertidal sediment, the grain size, in coastal zones. The study combines hyperspectral information (CASI-2 flight), robust statistic, and simultaneous field work (chemical and radiometric sampling), performed over Santander Bay, Spain. Field data acquisition was used to build a spectral library in order to study different atmospheric correction algorithms for CASI-2 data and to develop algorithms to estimate grain size in an estuary. Two robust estimation techniques (MVE and MCD multivariate M-estimators of location and scale) were applied to CASI-2 imagery, and the results showed that robust adjustments give acceptable and meaningful algorithms. These adjustments have given the following R(2) estimated results: 0.93 in the case of sandy loam contribution, 0.94 for the silty loam, and 0.67 for clay loam. The robust statistic is a powerful tool for large dataset.  相似文献   

16.
高光谱遥感以"图谱合一"等特点在生物多样性监测、土壤退化、植被重金属污染监测、生物量估算等方面都有广泛应用。通过长时间序列高光谱反演数据NDVI和NPP,较好的反映了"十一五"期间新疆生态环境V字型的变化趋势,基本符合5年新疆生态环境变化状况。高光谱数据反演技术是开展生态环境宏观监测的有效手段之一。  相似文献   

17.
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p?< 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p?< 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p?< 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.  相似文献   

18.
Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecological resources at different scales. High-resolution remote sensing provides unique capabilities in detecting a variety of features and indicators of environmental health and condition. LIDAR is an airborne scanning laser system that provides data on topography, channel dimensions (width, depth), slope, channel complexity (residual pools, volume, morphometric complexity, hydraulic roughness), riparian vegetation (height and density), dimensions of riparian zone, anthropogenic alterations and disturbances, and channel and riparian interaction. Hyperspectral aerial imagery offers the advantage of high spectral and spatial resolution allowing for the detection and identification of riparian vegetation and natural and anthropogenic features at a resolution not possible with satellite imagery. When combined, or fused, these technologies comprise a powerful geospatial data set for assessing and monitoring lentic and lotic environmental characteristics and condition.  相似文献   

19.
NALCO – the largest exporter of aluminium in India has a power plant of 720 MW capacity in Nandira watershed in Angul district of Orissa. The power plant utilises local coal to generate thermal power and disposes of large amount of ash which accumulates in slurry form at nearby two ash ponds. These ash ponds were breached on 31 December 2000, causing ash accumulation for entire regime of the Nandira river. An attempt has been made towards preparation of recovery and rehabilitation plan for NALCO using temporal Remote Sensing data and GIS. Indian remote sensing satellite data for pre-breach condition 12 December 2000, during breach event 31 December 2000 and post-breach condition 4 and 6 January 2001 has been digitally analysed for Nandira watershed. The satellite data of coarse spatial resolution provides the absence and presence of fresh sediment deposition along Nandira watershed and Brahmani river pertaining to pre-breach and post-breach conditions respectively on regional scales. The temporal comparison of fine resolution has clearly highlighted the aerial extent of damage caused by the disaster for entire watershed on local scales. The GIS has helped in demarcation of freshly accumulated ash at interval of 500 m along the river length as well as in delineation of maximum ash accumulation across the river width. The study has clearly demonstrated the use of temporal Remote Sensing data in conjunction with GIS for disaster management in terms of recovery and rehabilitation plan preparation of the Nandira watershed.  相似文献   

20.
Remote sensing of local environmental conditions is not accessible if substrates are covered with vegetation. This study explored the relationship between vegetation spectra and karst eco-geo-environmental conditions. Hyperspectral remote sensing techniques showed that there were significant differences between spectral features of vegetation mainly distributed in karst and non-karst regions, and combination of 1,300- to 2,500-nm reflectance and 400- to 680-nm first-derivative spectra could delineate karst and non-karst vegetation groups. Canonical correspondence analysis (CCA) successfully assessed to what extent the variation of vegetation spectral features can be explained by associated eco-geo-environmental variables, and it was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst region. Our study indicates that vegetation spectra is tightly linked to eco-geo-environmental conditions and CCA is an effective means of studying the relationship between vegetation spectral features and eco-geo-environmental variables. Employing a combination of spectral and spatial analysis, it is anticipated that hyperspectral imagery can be used in interpreting or mapping eco-geo-environmental conditions covered with vegetation in karst region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号