共查询到20条相似文献,搜索用时 0 毫秒
1.
Fernando J. Beltrán Javier Rivas Benito Acedo 《Journal of environmental science and health. Part. B》2013,48(3):449-468
Abstract Atrazine (6‐chloro‐N‐ethyl‐N'‐isopropyl‐1,3,5‐triazinedyl‐2,4‐diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher. 相似文献
2.
MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation 总被引:4,自引:0,他引:4
In recent years, there has been considerable concern over the release of methyl tert-butyl ether (MTBE), a gasoline additive, into the aquifers used as potable water sources. MTBE readily dissolves in water and has entered the environment via gasoline spills and leaking storage tanks. In this paper, we investigate ozonation and UV-ozonation for treatment of MTBE in contaminated drinking water sources. We report the test protocol and results of using solid-phase microextraction (SPME) to determine the level of MTBE and its oxidation byproducts in samples drawn from laboratory-scale ozone and UV-ozone reactors being evaluated at a US EPA research facility. Analysis of a prepared MTBE standard indicated a detection limit on the order of 0.1 microgl(-1) with a repeatability of +/-0.4%. Results show that the overall rate of removal of MTBE via UV-ozonation in a relatively turbid surface water (15 ntu) is twice that of ozonation alone. In addition, GC-MS analysis of decomposition products showed that tert-butyl formate (TBF), methyl acetate, butene, acetone, and acetaldehyde were produced by both processes. TBF and butene reach similar maximum yields from the two processes, but are more efficiently degraded by UV-ozonation treatment. This indicates that these treatment processes also degrade these byproducts. In contrast, the remaining byproducts (methyl acetate, acetone, and acetaldehyde) are formed at similar levels during treatment, but are not degraded once formed. These byproducts may be resistant to hydrogen abstraction by hydroxyl radical. 相似文献
3.
4.
This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH). 相似文献
5.
6.
光催化-臭氧氧化降解H酸的研究 总被引:4,自引:0,他引:4
采用光催化一臭氧氧化技术(催化膜/UV/O3)降解H酸。研究结果表明,光催化与臭氧氧化相结合具有明显的协同作用。实验进一步讨论了臭氧投加量、废水初始pH值和H酸初始浓度对光催化一臭氧氧化降解H酸的影响。降解后的H酸,萘环结构被破坏,可生化性提高。 相似文献
7.
The simultaneous action of powdered activated carbon and several coagulant agents on the removal of the fungicide dodine from spiked distilled water, was studied. As coagulants, ferric chloride (FeCl3) and basic polyaluminium chlorosulfate ([Al(OH)xCly(SO4)z]n) were examined, using polyacrylamide, in certain cases, as coagulant aid (polyelectrolyte). The efficiency of dodine removal was investigated with respect to the added amount of powdered activated carbon (PAC), the pH value, as well as the type and dose of coagulant and polyelectrolyte. The experiments were performed applying the standard jar-test procedure. The initial concentration of dodine was 250 μg/L. At this concentration and pH range 5–8 it was found that a dose of 100 mg/L PAC was necessary to achieve more than 98% removal of dodine, whereas lower removal (91–93%) was obtained applying half the dose of PAC under the same conditions. However, when 10–100 mg/L FeCl3 were simultaneously added with PAC, the removal efficiency increased to >98%, even with the half PAC dose. 相似文献
8.
NOM characteristics and treatabilities of ozonation processes 总被引:10,自引:0,他引:10
The objectives of this study were intended to evaluate the effects of the characteristics of natural organic matter on the treatabilities of ozonation, coagulation, filtration, and granular activated carbon processes. The ultra-violet absorbance (UV254) was used as a surrogate parameter to assess each process in reducing the disinfection by-product formation potential (DBPFP). The results indicate that the DBPFP varies with the sources of water samples and treatment processes, but is closely related to the measurement of UV254/DOC. Coagulation/sedimentation can eliminate large molecular weight organic fractions. Both pre- and post-ozonation processes can reduce some of DBP precursors than the conventional treatment process, and are more reliable for reducing the overall DBPFP. 相似文献
9.
This work investigated the degradation of a natural estrogen (17beta-estradiol) and the removal of estrogenic activity by the ozonation process in three different pHs (3, 7 and 11). A recombinant yeast assay (YES assay) was employed to determine estrogenic activity of the ozonized samples and of the by-products formed during the ozonation. Ozonation was very efficient for the removal of 17beta-estradiol in aqueous solutions. High removals (>99%) were achieved with low ozone dosages in the three different pHs. Several by-products were formed during the ozonation of 17beta-estradiol. However, only a few compounds could be identified and confirmed. Different by-products are formed at different pHs, which is probably due to different chemical pathways and different oxidants (O(3) and OH radical). The by-products formed at pH 11 were 10epsilon-17beta-dihydroxy-1, 4-estradieno-3-one (DEO) and 2-hydroxyestradiol, which were not formed in pH 3. Only testosterone could be observed in pH 3, whereas at pH 7 all three by-products were found. At pH 7 and 11 the applied ozone dosages were not enough to remove all the estrogenicity from samples, even though the 17beta-estradiol residual concentration for these two pHs was lower than at pH 3. Higher estrogenicity was detected at pH 11. An explanation to this fact may be that oxidation via OH radical forms more by-products with estrogenic activity. Probably, the formation of 2-hydroxyestradiol at pHs 7 and 11 is contributing to the residual estrogenicity of samples ozonized at these pHs. In this work, complete removal of estrogenic activity was only obtained at pH 3. 相似文献
10.
Arun Kumar Devendra P Saroj Vinod Tare Purnendu Bose 《Water environment research》2006,78(9):994-1004
This study is aimed at exploring strategies for mineralization of refractory compounds in distillery effluent by anaerobic biodegradation/ozonation/aerobic biodegradation. Treatment of distillery spent-wash used in this research by anaerobic-aerobic biodegradation resulted in overall COD removal of 70.8%. Ozonation of the anaerobically treated distillery spent-wash was carried out as-is (phase I experiments) and after pH reduction and removal of inorganic carbon (phase II experiments). Introduction of the ozonation step resulted in an increase in overall chemical oxygen demand (COD) removal, with the highest COD removals of greater than 95% obtained when an ozone dose of approximately 5.3 mg ozone absorbed/mg initial total organic carbon was used. The COD removal during phase II experiments was slightly superior compared with phase I experiments at similar ozone doses. Moreover, efficiency of ozone absorption from the gas phase into distillery spent-wash aliquots was considerably enhanced during phase II experiments. 相似文献
11.
Distillery spent-wash has very high organic content (75,000 to 125,000 mg/L chemical-oxygen demand [COD]), color, and contains difficult-to-biodegrade organic compounds. For example, anaerobic treatment of the distillery spent-wash used in this study resulted in 60% COD reduction and low color removal. Subsequent aerobic treatment of the anaerobic effluent resulted in enhancement of COD removal to 66%. In this paper, the effect of ozonation on various properties of the anaerobically treated distillery effluent, including the effect on its subsequent aerobic biodegradation, was investigated. Ozonation of the anaerobically treated distillery effluent at various ozone doses resulted in the reduction of total-organic carbon (TOC), COD, COD/TOC ratio, absorbance, color, and increase in the biochemical-oxygen demand (BOD)/COD ratio of the effluent. Further, ozonation of the anaerobically treated distillery effluent at an ozone dose of 2.08 mg/mg initial TOC and subsequent aerobic biodegradation resulted in 87.4% COD removal, as compared to 66% removal when ozonation was not used. 相似文献
12.
Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes 总被引:5,自引:0,他引:5
To minimize the environmental impact of textile effluents, mainly related to their high coloration and the presence of toxic or carcinogenic reactive dyes, the efficiency of photochemical and ozonation processes, applied in the form of isolated and combined procedures, were evaluated. The investigation was focused on the reduction of total organic carbon content (TOC), color and acute toxicity (monitoring by inhibition of Escherichia coli respiration). For a reaction time of 60 min, the anatase TiO2-assisted photocatalytic process produces color and TOC reduction of about 90% and 50%, respectively. Meanwhile, the ozonation process gives a decolorization of about 60% but negligible TOC reduction. When the processes were applied in a simultaneous form, the decolorization was almost complete and the TOC reduction was higher than 60%. The three treatments studied yield an acute toxicity reduction of around 50%. 相似文献
13.
Zhang Jian Tian Yu Zhang Jun 《Environmental science and pollution research international》2017,24(30):23794-23802
Environmental Science and Pollution Research - The release rule of phosphorus from sewage sludge during ozonation and removal by the magnesium ammonium phosphate (MAP) method were investigated. The... 相似文献
14.
15.
采用Nano-TiO2/O3和Nano-TiO2/UV/O3进行小试实验。通过对DOC、UV254、BrO3-和甲醛进行检测分析,研究了不同体系去除腐殖酸(HA)并控制臭氧副产物生成的效果。结果表明,当HA浓度为10 mg·L-1时,Nano-TiO2/O3体系对DOC的去除主要在反应进行20 min内完成,去除率仅达12.0%左右,对UV254的去除主要发生在2 min内,去除率仅达14.5%左右;而Nano-TiO2/UV/O3体系DOC和UV254的去除率分别达32.8%和53.3%。HA的存在显著减少了Nano-TiO2/O3体系BrO3-的生成量,出水BrO3-浓度为29.00 μg·L-1,而Nano-TiO2/UV/O3体系出水BrO3-浓度为5.00 μg·L-1。研究表明,相比Nano-TiO2/O3体系,Nano-TiO2/UV/O3体系能更好地控制BrO3-生成,同时能提高对HA的去除效果,且无甲醛生成的风险。 相似文献
16.
Adriana Wigh Alain Devaux Vanessa Brosselin Adriana Gonzalez-Ospina Bruno Domenjoud Selim Aït-Aïssa Nicolas Creusot Antoine Gosset Christine Bazin Sylvie Bony 《Environmental science and pollution research international》2016,23(4):3008-3017
A mixture of urban and hospital effluents (50 % v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms’ fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents. 相似文献
17.
Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction 总被引:3,自引:0,他引:3
The photocatalytic removal kinetics of fenitrothion at a concentration of 0.5mgl(-1) in pure and natural waters were investigated in Fe(III)/H2O2/UV-Vis, Fe(III)/UV-Vis and H2O2/UV-Vis oxidation systems, with respect to decreases in fenitrothion concentrations with irradiation time using a solar simulator. Fenitrothion concentrations were determined by HPLC analysis. Furthermore, total mineralization of fenitrothion in these systems was evaluated by monitoring the decreases in DOC concentrations with solar simulator irradiation time by TOC analysis. It was shown that the degradation rate of fenitrothion was much faster in the Fe(III)/H2O2/UV-Vis system than the Fe(III)/UV-Vis and H2O2/UV-Vis systems in both pure and river waters. Consequently, the mineralization rate of fenitrothion was much faster in the Fe(III)/H2O2/UV-Vis system than in the other two systems. The high *OH generation rate measured in the Fe(III)/H2O2/UV-Vis system was the key to faster degradation of fenitrothion. Increases in the concentrations of H2O2 and Fe led to better final degradation of fenitrothion. These results suggest that the photo-Fenton reaction (Fe(III)/H2O2/UV-Vis) system is likely to be an effective method for removing fenitrothion from contaminated natural waters. 相似文献
18.
Heidemarie Schaar Manfred Clara Norbert Kreuzinger 《Environmental pollution (Barking, Essex : 1987)》2010,158(5):1399-1404
The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17α-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O3 g DOC−1 increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. 相似文献
19.
20.
N. Rioja P. Benguria F. J. Peñas S. Zorita 《Environmental science and pollution research international》2014,21(19):11168-11177
This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water. 相似文献