首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了探究负载顺序对Mn-Ce/TiO2催化剂氨选择性催化还原NO的影响,文章采用浸渍法制备了Mn-Ce/TiO2低温SCR催化剂,并通过BET、SEM、XRD、FT-IR、H2-TPR和NH3-TPD对不同负载顺序的催化剂样品进行了表征,分析影响SCR活性的原因。结果表明,同时负载锰铈的催化剂脱硝活性最高,在反应温度为150 ℃的条件下,Mn-Ce/TiO2催化剂的脱硝效率达到100%。BET和SEM结果表明,Mn、Ce同时负载催化剂的比表面积最大,且催化剂表面更加平整光滑,有利于催化活性;XRD结果表明,与同时负载锰铈的催化剂相比,锰铈分步负载时,其锰氧化物不够分散,都会影响催化剂中活性组分的晶体结构,从而影响催化剂性能。从H2-TPR、NH3-TPD分析可知,与锰铈同时负载比较,锰铈分步负载时,催化剂还原峰向高温方向发生了偏移,且催化剂表面酸性位点变弱,抑制了对NH3的吸附能力,不利于NOx  相似文献   

2.
以稻壳基活性炭(DAC)为载体,利用等体积浸渍法制备了DAC负载Mn、Ce氧化物的Mn-Ce/DAC脱硝催化剂,并用于氨法SCR反应.采用N2吸附、X射线衍射(XRD)、X射线光电子能谱(XPS)和程序升温吸附脱附(TPR/TPD)等手段对催化剂的物理化学性能进行了表征.结果发现与商业木屑基活性炭负载Mn、Ce氧化物催化剂(Mn-Ce/MAC)相比,Mn-Ce/DAC具有更高的Ce3+/Ce4+比率、表面化学吸附氧含量以及表面Brønsted酸性位点,这与其优良的低温SCR活性及抗硫抗水性能直接相关.原位红外光谱结果显示在含硫气氛中Mn-Ce/DAC表面的硫酸盐含量明显低于Mn-Ce/MAC,表明前者具有优良抗硫性能.  相似文献   

3.
采用溶胶凝胶法制备了Mn-Ce/TiO2催化剂,以NH3为还原剂,通过程序升温反应考察其选择性催化还原NO的催化性能.同时,着重探讨了焙烧温度、焙烧时间、活性物质负载量及Mn、Ce负载比例对催化剂结构和性能的影响,并用BET、XRD等对催化剂进行了表征.结果表明,活性组分负载量由0增至20%时,NO转化率随着负载量的增加而提高,当(Mn+Ce)质量分数为20%,催化剂活性最高,此后随着活性组分负载量的增加,NO转化率明显下降;Mn与Ce的负载比例为0.85∶0.15时,催化剂比表面积最大,为112.31m2·g-1;焙烧温度500℃时催化剂晶相均为TiO2锐钛矿型结构,焙烧温度升高至600℃,催化剂晶相为TiO2锐钛矿型和金红石型混合结构,且催化剂比表面积急剧减小;焙烧时间对催化剂晶相结构影响不大,焙烧时间为5h时,Mn-Ce/TiO2的脱硝性能最好.  相似文献   

4.
采用Ce调控负载型钒磷氧(VPO/TiO2)催化剂的表面酸性并与之形成密切相关的微观结构,研究催化剂VPO-Ce/TiO2的脱硝性能.结果表明,当P/V为1/3、Ce/V为1/4、活性组分负载量10%、催化剂焙烧温度为400℃时,催化剂的脱硝活性最好,反应温度250~350℃范围内的脱硝率高于96.0%.BET测试结果表明,催化剂0.1VP(0.33)O-Ce(0.25)/TiO2的比表面积为10.74m2/g,较0.1VP(0.33)O/TiO2提高了约58.6%.0.1VP(0.33)O/TiO2表面化学吸附氧(Oα)和晶格氧(Oβ)的比例Oα/Oβ为72%,掺杂Ce后Oα/Oβ升高至85%,Ce掺杂还能促进相邻V5+和V4+的形成,提高催化剂的氧化还原性能.Ce掺杂对催化剂的表面酸性影响较大,当Ce/V为1/4时催化剂表面Brønsted酸最强,这与活性测试相吻合.控制烟气中SO2和水蒸气的体积浓度分别为200×10-6和4vol.%,催化剂的脱硝活性在150~300℃温度范围内最高下降约15.8%,当温度高于300℃时催化剂的脱硝活性几乎不下降,且反应后的催化剂表面无硫酸根生成,催化剂呈现出较强的抗SO2和水蒸汽的性能.  相似文献   

5.
采用不同工艺制备V2O5-WO3-MoOx/TiO2堇青石整体式催化剂,以甲苯和NO为探针分子,考察了Mo的负载量、涂覆方法、粘结剂的种类等制备工艺对整体式催化剂性能的影响,用XRD、SEM-EDS、FT-IR、BET等技术对催化剂进行了表征分析.结果表明,采用涂敷法,以添加量为1%的甲基纤维素为粘结剂所制备的V1W6Mo3/TiO2堇青石蜂窝陶瓷整体式催化剂具有最优活性和稳定性(T90为307℃,负载率为28.26%,脱落率为6.81%),在燃煤烟气中具有优异的同步去除VOCs与NO性能,甲苯去除率可达99%,NO去除率为100%,N2选择性为99%.XRD、SEM-EDS表明V、W、Mo活性组分分布均匀且高度分散.FT-IR证明添加甲基纤维素的整体式催化剂具有优异的抗硫性能.  相似文献   

6.
采用紫外还原的方法成功制备出Cu3(BTC)2(均苯三甲酸合铜)负载贵金属Ag纳米颗粒的Ag/Cu3(BTC)2复合催化剂,并用于氨法脱硝反应.应用X射线衍射(XRD)、透射电子显微镜(TEM)、BET测试等手段对催化剂的物理化学性能进行了表征.结果发现Ag纳米颗粒以球状结构高度均匀分散在Cu3(BTC)2骨架结构的表面.负载Ag纳米颗粒和Cu-MOF的协同作用,提高了Ag/Cu3(BTC)2催化剂的脱硝效率,负载量为15wt%的催化剂表现出最优脱硝效率,在220~260℃达到100%的NO转化率.同时,利用in-situ FTIR技术对NH3-SCR的反应机理进行了探究.  相似文献   

7.
分别采用溶胶-凝胶法和浸渍法制备xCuO-yWO3/TiO2催化剂(x,y分别代表样品中ω(CuO)和ω(WO3)),并在微型固定床反应器中对制备的xCuO-yWO3/TiO2催化剂进行选择性催化还原脱硝(NH3-SCR)性能评价。结果表明:采用溶胶-凝胶法制备的2CuO-6WO3/TiO2催化剂具有较好的脱硝性能,在250~350 ℃,NOx转化率达到90%以上,相较于浸渍法制备的2CuO-6WO3/TiO2催化剂活性明显提高。并采用BET、XRD、H2-TPR、NH3-TPD和XPS等表征手段对制备的催化剂进一步表征分析,结果表明:通过溶胶-凝胶法制备2CuO-6WO3/TiO2催化剂的比表面积和表面化学吸附氧明显提高,且还原能力和酸性增强,对NH3的吸附能力亦有所提高,因此溶胶-凝胶法制备的2CuO-6WO3/TiO2催化剂表现出较好的NH3-SCR脱硝性能。  相似文献   

8.
采用浸渍法制备Mo-Mn/TiO2催化剂,研究了反应温度、HCl和SO2对其模拟烟气协同脱硝脱汞活性的影响.研究表明,过高的反应温度不利于汞的脱除过程,过低的温度则抑制脱硝反应的顺利进行,但在200℃时可兼具最优的脱硝和脱汞效率;HCl的加入促进汞的高效氧化,却明显降低催化剂对NO的转化;而烟气中SO2的存在对催化剂的脱硝和脱汞过程均起到抑制作用.利用XRD、H2-TPR和XPS等表征手段对硫中毒反应前后的催化剂进行了研究.结果表明,硫酸盐在催化剂表面的不断沉积和活性组分Mn4+及化学吸附氧Oα的消耗乃是致使催化剂失活的主要原因;另外,SO2与NH3和Hg0对催化剂表面活性位点的竞争吸附,也严重抑制催化剂的脱硝和脱汞反应.Mo-Mn/TiO2的脱硝过程是通过Mn价态之间的相互转化来完成的,其中元素Mo和O2是其转化得以实现的助剂;Mo-Mn/TiO2对汞的脱除以催化氧化为主,金属氧化物中的晶格氧将Hg0转化为HgO而被脱除.  相似文献   

9.
以Mn为活性组分,Ce为活性助剂,选取非金属矿物材料(硅藻土、海泡石)部分替代锐钛矿型TiO_2载体,采用分布共混法制备了Mn-Ce/TiO_2-X低温SCR催化剂,系统分析了硅藻土和海泡石部分取代锐钛型TiO_2载体后对Mn基催化剂低温脱硝活性的影响,运用BET、SEM、XRD等测试手段对催化剂进行表征。研究分析表明:锐钛矿型TiO_2载体经非矿材料部分取代后,Mn-Ce/TiO_2-X催化剂的比表面积、孔结构参数以及表面孔结构形貌均得到改善和提高;Mn-Ce/TiO_2-硅藻土和Mn-Ce/TiO_2-海泡石催化剂中TiO_2的结晶度均有不同程度降低。6%硅藻土和6%海泡石替代部分TiO_2载体后,Mn-Ce催化剂的脱硝活性得到不同程度的提高,反应温度在90~180℃时,以上3种方式制备的催化剂SCR脱硝活性顺序为Mn-Ce/TiO_2-硅藻土>Mn-Ce/TiO_2-海泡石>Mn-Ce/TiO_2。  相似文献   

10.
碱土金属钙沉积对Mn-Ce/TiO2低温SCR催化剂脱硝性能的影响   总被引:1,自引:1,他引:0  
周爱奕  毛华峰  盛重义  谭月  杨柳 《环境科学》2014,35(12):4745-4751
本研究采用浸渍法分别制备CaCl2、CaCO3和CaSO4这3种钙盐前驱体沉积的Mn-Ce/TiO2催化剂,通过分析催化剂活性与催化剂理化特性之间的关系,考察碱土金属钙沉积对Mn-Ce/TiO2低温SCR催化剂脱硝性能的影响.结果表明,钙的加入会导致催化剂中毒,且不同钙前驱体掺杂对催化剂中毒效应不同.CaCO3的沉积对Mn-Ce/TiO2催化剂脱硝效率的影响最小,而CaCl2沉积对催化剂活性抑制作用最为强烈.通过比表面积测试(BET)、X射线光电子能谱(XPS)、X射线晶体衍射(XRD)、程序升温脱附(TPD)等方法对不同催化剂进行表征发现,催化剂的晶型变化、孔道结构破坏、表面活性元素及酸性点位的减少是催化剂中毒的主要原因.  相似文献   

11.
在固定床反应器上研究了反应温度和烟气组分对Ce-W/TiO2(物质的量比Ce:W=2:1)催化剂脱硝协同脱汞活性的影响.结果表明:反应温度对该催化剂的脱硝脱汞效率影响显著,在280~400℃温度区间,脱硝效率随温度升高而升高,而脱汞效率在温度为280℃与360℃的条件下较高,360℃时兼具最好的脱硝与脱汞效率.在SCR气氛中,HCl对Hg0的氧化脱除有极大的促进作用,低浓度的HCl也有利于脱硝效率的提高,但HCl浓度过高对NO的脱除有抑制作用;SO2的存在对脱硝过程可起到促进作用,对Hg0的氧化有抑制作用.利用BET,XRD,SEM,TPD,XRF,NH3-TPD等分析手段对反应前后催化剂进行表征,结果表明:Ce-W/TiO2无微孔结构,活性组分CeO2和WO3以高度分散的形式分布于载体表面.280℃条件下部分Hg以HgCl2的形式吸附于反应后催化剂表面,随着反应温度的升高催化剂表面吸附态的汞急剧降低.SCR气氛中的HCl与SO2会影响催化剂表面酸性,同时增加Cl和S元素含量,进而影响该催化剂的脱硝与脱汞效率.  相似文献   

12.
为研究纳米级V2O5与MoO3催化剂表面结构对其催化氧化碳烟活性的影响,以TiO2为载体,采用等体积浸渍法制备了不同负载率(5%、10%、20%、40%)的V2O5/TiO2与MoO3/TiO2催化剂,通过扫描电镜(SEM)、X射线衍射仪(XRD)对比研究了2种催化剂在TiO2载体上的分散状态及物相结构.以Printex-U碳黑为试验用碳烟,采用热重分析仪对V2O5与MoO3催化剂催化碳烟氧化的活性进行了比较.结果表明:V2O5与MoO3在TiO2载体上均存在一个单层分散饱和阈值,分别为V20(负载率为20%,下同)、Mo10,在该阈值前后活性组分在载体上分别以单层分散状态和明显的晶态存在.对于V2O5催化剂,其最佳催化活性出现在负载率接近单层分散饱和阈值时,与无催化状态相比,Ti(起燃温度)、Tp(最大失重率温度)以及Tf(燃尽温度)分别下降了69.1、46.0、23.0 ℃,有明显的阈值效应.而对于MoO3催化剂,因其自身低熔点性而表现出良好的表面迁移能力,再加上α-MoO3晶体特有的层状结构,使其可释放出更多的晶格氧,随着负载率的增加,该催化剂催化氧化碳烟活性持续增加,并且未观察到明显的阈值效应.研究显示,在相同负载率下,MoO3催化剂催化氧化碳烟活性均高于V2O5催化剂.   相似文献   

13.
垃圾焚烧过程中会产生大量氯苯等氯代挥发性有机污染物(CVOCs)和二噁英等持久性有机污染物(POPs). CVOCs的排放会导致光化学烟雾和温室效应的产生,而二噁英能在土壤中长期附存,具有人体致癌和致畸变等严重危害. 催化降解技术具有显著优势,能将二噁英等有机污染物彻底破坏分解,最终将其转化为CO2、H2O和HCl等产物. 基于钒基催化剂VOx/TiO2的过渡金属氧化物催化剂已被广泛应用于烟气CVOCs和二噁英处理领域. 钒基氧化物VOx中的V=O基团对二噁英起到亲核吸附的作用,在钒基氧化物上添加第二活性组分钼氧化物MoOx可以提高催化剂的催化活性. 本文采用湿法浸渍的方法制备出用于催化降解含氯污染物的粉体钒钼钛VOx-MoOx/TiO2催化剂,并分析其合成方法、催化表征和性能测试结果,讨论反应温度对一氯苯及二噁英催化率影响的机理,旨在为开发二噁英催化技术提供参考. 结果表明:VOx-MoOx/TiO2催化剂表面催化活性位点较多,活性组分分散良好,起始还原温度较低,活性氧含量较多,比表面积较大,颗粒团聚较轻,具有优良的催化特性. 通过系列实验筛选出合适的催化剂组分比例为5%VOx-5%MoOx/TiO2(记作“V5-Mo5-Ti”,即VOx和MoOx的质量分数各占5%,TiO2的质量分数占90%),在150 ℃低温下其对一氯苯和二噁英的催化效果优异. V5-Mo5-Ti催化剂对一氯苯的低温转化率随原始稳定浓度和空速比的升高而降低. 在一氯苯初始浓度为150×10?6、空速比为10 000 h?1时,V5-Mo5-Ti催化剂在150 ℃下对一氯苯的转化率为54.0%,在300 ℃时接近100%. 在150 ℃的低温环境中,该催化剂对二噁英催化脱除率在86%以上,催化降解率在74%以上. 研究显示,VOx-MoOx/TiO2催化剂对二噁英的催化脱除率和降解率随温度的升高而提高,主要归因于升温加快了V2O5中V5+和V4+元素以及MoO3中Mo6+和Mo4+元素的催化氧化循环速率.   相似文献   

14.
以Al2O3,TiO2,ZrO2 3种氧化物为载体,通过溶胶凝胶法制备以Ni-V双金属氧化物为活性组分催化剂,在固定床反应器上研究了催化剂的二氯甲烷(DCM)催化燃烧性能.并通过XRD、BET、FTIR-Pyridine和H2-TPR表征分析催化剂的物理化学特性,结果表明催化剂的氧化还原性能与酸性存在一定的协同能力促进DCM的催化氧化.10% Ni-V/Al2O3和10% Ni-V/TiO2催化剂表面大量的酸性位点和强氧化性使得催化剂在催化燃烧DCM时拥有较好的活性,其中10% Ni-V/Al2O3在252℃时就有90%的转化率,但其在低温时易产生含氯有机副产物的CH3Cl,并且50h连续稳定性测试发现其有失活现象.而10% Ni-V/TiO2催化剂达到90%转化率时温度为274℃,且其在DCM降解中并没有CH3Cl的产生,稳定性测试中也没有失活现象发生,这可能是与其拥有更多中强度B酸以及较强氧化还原能力有关.  相似文献   

15.
司涵  黄琼  陶涛  杨波  赵云霞  陈敏东 《中国环境科学》2020,40(10):4314-4322
采用柠檬酸络合法制备La-M-Co-O(M=Mn,Cr,Fe,Ni和Cu)/堇青石催化剂,运用BET,XRD,SEM,H2-TPR和XPS技术对催化剂性能及微观结构进行表征分析,研究考察过渡金属掺杂,掺杂量以及焙烧温度等对催化剂催化氧化性能的影响.结果表明,随着催化剂焙烧温度升高至650℃时,催化剂表面所负载的活性氧化物颗粒最为分散,其氧化活性最佳,且当反应温度为350℃时,催化剂催化氧化氯苯转化率可达96.4%,究其原因是高温焙烧致使催化剂形成LaCoO3钙钛矿型复合氧化物,其复合氧化物的晶体结构有利于催化剂催化氧化氯苯性能的提高.  相似文献   

16.
考察了以RuCl3·3H2O为前驱物,以AC(颗粒活性炭)为载体制备Ru/AC时,焙烧氛围、焙烧温度、焙烧时间对Ru/AC催化活性的影响,并利用XPS(X-ray photoelectron spectra,X射线光电子能谱分析)、BET(brunner-emmet-teller method,比表面积测定)和SEM(scanning electronic microscopy,扫描电镜)等手段对样品进行了表征. 结果表明,不同焙烧氛围中制备的Ru/AC活性有较大差异:在N2焙烧氛围中,容易形成去除BrO3-的有效活性组分(RuO2);而在真空焙烧氛围中,几乎没有活性组分的产生;在H2-N2〔φ(H2)为1.5%,φ(N2)为98.5%〕氛围中焙烧,负载在AC上的活性组分有Ru0(单质钌)和RuO2. 焙烧温度对Ru/AC去除BrO3-的性能有着较为显著的影响,高温有利于AC的石墨化进程,载体性能得到优化;但焙烧温度过高(1 000 ℃)时,会产生金属颗粒团聚现象;最适宜的焙烧温度为900 ℃. Ru/AC的活性随着焙烧时间的延长呈先增后降的趋势;焙烧时间为3 h时,载体的比表面积和孔容积得到提高且有效活性组分能够均匀地分散在AC载体上. 综上,Ru/AC催化剂的最优焙烧条件:焙烧氛围为N2,焙烧温度为900 ℃,焙烧时间为3 h. 在该条件下制备的Ru/AC利于形成去除BrO3-的活性物质RuO2,并且其能够均匀地分布在AC载体上,使催化反应进行得更为彻底,可在2 h内将BrO3-全部去除.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号