首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为了促进水葫芦和污泥的资源化利用,探究水葫芦/污泥生物炭粒的基本理化性质及其对水中Cr3+的吸附机制,以水葫芦、污泥为原料,在300~500℃热解温度下制得生物炭粒,通过产率分析、灰分分析、比表面积和孔径分析及SEM(扫描电镜)分析,同时利用吸附动力学模型和等温吸附模型对生物炭粒吸附水中Cr3+的内在机制进行研究,最后采用TCLP(毒性浸出法)测定了不同生物炭粒中重金属的浸出毒性.结果表明:随着热解温度从300℃升至500℃,生物炭粒的产率从14.93%降至11.75%,生物炭粒的灰分含量逐渐升高,比表面积增大.SEM结果显示,水葫芦与污泥质量比为1:10时,生物炭粒比表面积较大,孔隙结构明显.当水葫芦与污泥质量比为1:10、热解温度为500℃时生物炭粒对Cr3+的吸附量最大,为44.96 mg/g.热力学分析显示,生物炭粒对溶液中Cr3+的吸附以化学吸附为主,且为单层吸附.TCLP试验表明,水葫芦/污泥生物炭粒中各重金属(Cd、Zn、Cu、Pb、Ni、Cr)的浸出浓度均低于GB 5085.3-2007《危险废物鉴别标准浸出毒性鉴别》的限值.研究显示,添加水葫芦能改善生物炭粒的理化性质,使得生物炭粒对Cr3+的吸附量增大,以化学吸附为主,且为单层吸附,水葫芦/污泥生物炭粒浸出毒性较低,可为生物炭类环境功能材料的研制提供选材依据.   相似文献   

2.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600 ℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500 ℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500 ℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500 ℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7.93 mg/g。  相似文献   

3.
生物炭对土壤中重金属铅和锌的吸附特性   总被引:12,自引:8,他引:12  
王红  夏雯  卢平  布雨薇  杨浩 《环境科学》2017,38(9):3944-3952
利用固定床热解实验装置在不同热解温度(300~700℃)下制备了3种生物炭[杨树枝炭(PBC)、水葫芦炭(WHC)和玉米秸秆炭(CSC)],以南京市铅锌银矿区周边的菜园土为对象,研究了生物炭种类、热解温度和生物炭添加量对土壤重金属(Pb和Zn)吸附特性的影响,并结合生物炭的孔隙度、XRD和FTIR等分析,初步探讨了生物炭对土壤重金属的吸附机制.结果表明,生物炭的添加均不同程度地降低了土壤中Zn和Pb的浸出含量,水葫芦炭对土壤重金属的吸附效果最佳,在热解温度为500℃和生物炭添加量为5%的条件下,水葫芦炭对土壤中Zn和Pb的吸附率分别为21.83%和44.57%,相应的单位吸附量分别为227.65μg·g~(-1)和363.76μg·g~(-1).随着热解温度的升高,生物炭对土壤中Zn和Pb的吸附率逐渐增大,且在热解温度为500℃和700℃下制备的水葫芦炭对土壤中Zn和Pb的吸附能力相差不大,这表明中等温度热解有利于水葫芦炭形成较好的理化特性.随着生物炭添加量的增加,水葫芦炭对土壤中Zn和Pb的吸附率逐渐增大,但单位吸附量却逐渐减小,当水葫芦炭添加量为10%时,其对土壤中Pb的吸附率可达93.93%.结合生物炭的理化结构和土壤重金属吸附实验的结果,可以推测离子交换和络合作用是水葫芦炭修复重金属污染土壤的主要作用机制.  相似文献   

4.
为了探究稻草生物炭对土壤中重金属Cd2+和Pb2+的吸附机制,采用水稻秸秆在500℃下热解制备稻草生物炭,设置不同吸附时间、Na+和Ca2+离子强度、pH等影响因素,拟合稻草生物炭对重金属的吸附动力学、吸附等温线;在此基础上,采用黄沙模拟土柱试验得出稻草生物炭固定Cd2+和Pb2+的穿透曲线,着重分析比较pH和Na+离子强度对稻草生物炭吸附固定重金属的影响.结果表明:在高pH、低离子强度下,稻草生物炭对重金属的吸附效果较好;当pH为6时,稻草生物炭对Pb2+、Cd2+的吸附效率分别为92.58%、63.36%;当离子强度为10 mmol/L时,稻草生物炭对Pb2+、Cd2+的最高吸附效率分别为97.58%、68.35%;准二级动力学模型能很好地拟合稻草生物炭对Pb2+、Cd2+的吸附规律,拟合系数(R2)均大于0.995 8,表明稻草生物炭吸附速率主要由化学吸附机制决定;此外,稻草生物炭对Pb2+的吸附规律适合采用Langmuir等温吸附模型进行描述,而对Cd2+的吸附规律采用Langmuir和Freundlich等温吸附模型均能进行很好的模拟,表明稻草生物炭对Pb2+的吸附是近似单分子层吸附,而对Cd2+的吸附存在多分子层吸附.由黄沙土柱模拟试验结果得出,稻草生物炭对Pb2+和Cd2+的滞留率随着pH的升高和离子强度的降低而增强.在Pb2+和Cd2+同时存在条件下,当pH为6、离子强度为1 mmol/L、稻草生物炭按黄沙质量的0.5%投加时,稻草生物炭对土柱中Pb2+、Cd2+的滞留效果最好.研究显示,高pH对稻草生物炭吸附固定重金属起到促进作用,而高离子强度对稻草生物炭吸附固定重金属起到抑制作用.   相似文献   

5.
热解温度对浒苔基生物炭重金属特征的影响   总被引:1,自引:0,他引:1  
利用限氧控温炭化法制备浒苔基生物炭,探讨了不同热解温度(200、300、400、500和600℃)对生物炭产率、生物炭重金属(Cu、Zn、Cr、Cd、Pb、As、Hg)总量及其水溶态重金属含量的影响。结果表明:生物炭产率随热解温度升高而降低。生物炭中Cu、Zn、Cr、Cd、Pb含量较原料均有显著增加,而As和Hg含量均低于原料。总体上热解碳化可促进浒苔基生物炭中Cu、Zn、Cr、Cd及As的挥发迁移趋势,但Pb则呈现富集趋势。此外,生物炭水溶态重金属含量低于原料,且热解温度与水溶态重金属含量呈负相关性,表明热解过程可降低这些重金属的溶出。  相似文献   

6.
戴亮  赵伟繁  张洪伟  韩涛  张康 《环境工程》2020,38(12):70-77
重金属带来的环境风险日益严峻,利用污泥生物炭去除水中重金属污染方面的研究得到了广泛关注。结合当前国内外研究现状,归纳了不同条件下制备的污泥生物炭对水中重金属,如Cd、Pb、Cr、As等的吸附机理,污泥生物炭对大多数重金属的吸附满足物理吸附和化学吸附的多重作用,可通过增加生物炭表面有效基团及有效吸附位点提升吸附性能。同时,总结了影响吸附效率的各种因素,探究了污泥生物炭的再生问题,并对今后污泥生物炭去除水中重金属的研究方向做出了展望。  相似文献   

7.
美洲商陆生物炭对Zn、Pb、Cd和Cu的吸附特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为探究美洲商陆生物炭对Zn、Pb、Cd和Cu的吸附特性,研究了溶液初始浓度和pH、吸附剂投加量、吸附温度、吸附时间等因素对其吸附效果的影响,并利用SEM、EDS以及XRD对生物炭进行表征。结果表明:该生物炭吸附重金属后其结构发生显著改变,且生物炭表面生成较多的金属化合物。4种重金属之间对该生物炭的吸附位点存在竞争关系,并且Pb、Cu具有更强的竞争力。大量H+的存在会抑制美洲商陆生物炭对Zn、Cd和Cu的吸附,但对Pb的吸附影响较小。在吸附剂投加量达到0. 2 g时,4种重金属均能得到充分的吸附,去除率接近100%。生物炭对Zn、Pb和Cd的吸附数据与Langmuir等温方程拟合的相关系数更大为0. 1651~0. 9657,但Cu的吸附数据与Freundlich等温方程拟合更好,相关系数为0. 4494~0. 9372。在吸附动力学方面,准二级动力学模型对4种重金属的吸附具有更好的拟合效果。美洲商陆生物炭对4种重金属均具有相对较强的吸附能力。  相似文献   

8.
以山羊粪便为原料,在300℃和700℃缺氧热解条件下制备生物炭,分别记为D300和D700。使用扫描电镜表征生物炭结构特征,运用比表面积仪测定其比表面积和孔径大小,以此探究不同热解温度条件下羊粪生物炭的内部结构及比表面积特征。以水体氨氮(20 mol/L)为目标污染物,以D300和D700为吸附剂,研究不同氨氮浓度、温度、pH以及吸附剂投加量等因素对水体氨氮吸附的影响以及吸附特性。结果表明:热解温度从300℃上升到700℃,生物炭的比表面积、总孔容随之增大,平均孔径反之减小,吸附效率从15.72%提升到24.73%。羊粪生物炭吸附水体氨氮的最佳pH在6~8;通过对动力学数据进行分析,发现准二级动力学方程(R~2=0.999 1)比准一级动力学方程(R~2=0.663 3)能更好地拟合动力学数据。吸附等温曲线拟合发现Langmuir方程(R~2=0.842 74)能更好地描述氨氮在羊粪生物炭上的吸附行为。吉布斯自由能变化、焓变和熵变的计算结果表明:羊粪生物炭对氨氮的吸附过程是自发的吸热过程。700℃条件下制备的羊粪生物炭比D300拥有更好的吸附性能。  相似文献   

9.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

10.
羊粪生物炭对水体中诺氟沙星的吸附特性   总被引:3,自引:0,他引:3  
以羊粪为原料分别在350、450、550、650℃条件下制备生物炭,通过元素分析、BET-N_2、电镜扫描及FTIR表征了不同热解温度下羊粪生物炭的结构特征,并采用序批实验研究了pH、生物炭投加量、热解温度、初始浓度等因素对羊粪生物炭吸附水体中诺氟沙星(NOR)的影响及吸附机制.结果表明,随着热解温度的升高,生物炭的比表面积、总孔容、平均孔径增大,芳香性和稳定性也有所提高.羊粪生物炭吸附NOR的最佳初始pH为6.0,吸附在180 min左右达到平衡,采用准二级动力学模型能更好地拟合动力学数据(R~20.96),吸附速率由表面吸附和颗粒内扩散共同控制.等温吸附拟合发现,Langmuir模型能较好地描述NOR在羊粪生物炭上的吸附行为(R~20.93),吸附过程均为有利吸附,且可能与氢键和π-π键作用密切相关,4种热解温度下生物炭的吸附能力大小为:650℃550℃450℃350℃.吸附过程中ΔGθ0、ΔHθ0、ΔSθ0,表明羊粪生物炭对NOR的吸附是自发、吸热及熵增加的过程.650℃和550℃条件下制备的羊粪生物炭可作为水体中NOR的优势吸附材料.  相似文献   

11.
以深圳市某污水处理厂的污泥为原料,研究了污泥热解过程产生的颗粒物及其中8种重金属的分布规律.结果表明,颗粒物的生成速率分别在400~600℃和1000℃保温30min的两个区间内达到峰值.8种重金属的热挥发性由大到小依次为Cd > Zn > As > Pb > Mn > Ni > Cu > Cr,而其在颗粒物中富集能力大小顺序为Pb > As > Mn > Zn > Cd > Ni > Cr > Cu.颗粒物重金属在热解气中的体积浓度随热解过程呈上升趋势,Zn和Cd则在升温阶段(1000℃以前)达到峰值后开始降低.研究表明,污泥热解颗粒物富集的重金属超标,因而污泥热解尾气颗粒物的去除装置十分必要.  相似文献   

12.
研究了热解时间(1,2,4 h)对污泥炭理化性质、结构和重金属总量的影响,并对污泥炭中重金属的生态风险进行了评价。结果表明:随着热解时间逐渐延长(1~4 h),污泥炭产率和H/C均有不同程度的下降,而其灰分含量和比表面积都显著增加,污泥炭芳香化程度也明显提高。与原污泥相比,热解后污泥炭中各重金属(Cu、Zn、Pb、Cr、Mn、Ni)风险系数均显著降低。当热解时间为2 h时,污泥炭中除Zn之外,其余5种重金属都呈低风险或无风险状态,该结果可为污泥无害化处理和资源化利用提供了参考。  相似文献   

13.
市政污泥生物碳对重金属的吸附特性   总被引:2,自引:0,他引:2       下载免费PDF全文
李江山  薛强  王平  刘磊 《环境科学研究》2013,26(11):1246-1251
采用市政污泥在300℃缺氧条件下制得污泥生物碳,研究了污泥生物碳添加量、溶液pH及吸附反应时间对溶液中Pb2+、Cu2+、Zn2+吸附效果的影响,并分析了各因素影响机制及污泥生物碳对重金属的吸附机理. 结果表明,污泥生物碳对溶液中重金属的去除率与重金属水合离子半径呈负相关,随着污泥生物碳添加量的增加,溶液中重金属的去除率不断增加,但单位吸附量总体上呈下降趋势. 重金属吸附量随溶液pH的增加而增大,当溶液初始pH为6.00时,污泥生物碳对溶液中Pb2+、Cu2+和Zn2+的吸附量最大,分别达42.941、25.769和12.484mg/g. 伪二级动力学方程可有效描述溶液中重金属离子在生物碳上的吸附过程,重金属在污泥生物碳表面的吸附主要受化学反应控制,Pb2+、Cu2+和Zn2+的平衡吸附量分别为39.747、6.849和10.004mg/g,达到吸附平衡的时间为Pb2+>Zn2+>Cu2+.   相似文献   

14.
本研究采用室内模拟实验的方法,考察了生物炭(热解温度200,300,400,500℃)对Pb(Ⅱ)的吸附行为,并以草酸和柠檬酸为代表,探讨有机酸对生物炭吸附Pb(Ⅱ)的影响.结果表明:Langmuir模型较Freundlich模型更适合于对两类生物炭(花生壳生物炭、松木生物炭)吸附Pb(Ⅱ)的数据进行拟合,200℃制备的花生壳生物炭对Pb(Ⅱ)的吸附容量最大;生物炭吸附Pb(Ⅱ)的过程为自发过程,且花生壳生物炭强于松木生物炭,低温生物炭强于高温生物炭;柠檬酸浓度为2.60×10-2mmol/L及草酸浓度为7.65×10-2mmol/L以下时,其在生物炭表面的吸附为Pb(Ⅱ)提供了更多的吸附位点,从而促进了Pb(Ⅱ)吸附;有机酸浓度增大以后,占据生物炭的内部孔隙,竞争重金属吸附位点,从而抑制了Pb(Ⅱ)在生物炭上的吸附.本研究将为系统认识生物炭的环境效应提供重要的基础信息,有助于全面评估有机酸影响下生物炭在环境修复中的功能.  相似文献   

15.
以含有FeSO4的活性污泥为原料,采用水热碳化法,在220℃,4 h条件下,制备得到磁性炭(Fe-SSBC),并实现污泥减量。以Cd2+和Pb2+为模型污染物,探究了Fe-SSBC的投加量、起始酸碱度对Cd2+和Pb2+吸附的影响以及吸附机理。采用元素分析(EA)、X射线能谱分析(EDS)、傅里叶红外光谱分析(FTIR)、比表面积(BET)、X射线光电子能谱分析(XPS)、磁滞回线对样品进行表征。研究结果表明:在投加量为0.2 g,pH为5的条件下,Fe-SSBC对Cd2+的吸附效果最好,在10 h后去除率接近100%;投加量为0.3 g,pH为6时,对Pb2+的吸附效果最佳,在8.5 h后Pb2+去除率接近100%。Fe-SSBC对Cd2+和Pb2+的吸附动力学拟合结果更符合准二级动力学模型,Langmuir吸附等温线模型能够更好地反映Cd2+和Pb2+在Fe-SSBC上的单分子层吸附,化学吸附为控制吸附过程,同时存在物理吸附。制备磁性炭在实现污泥减量的同时,具有有效去除水中Cd2+和Pb2+的作用。  相似文献   

16.
污泥基生物炭作为土壤改良剂,为污泥提供了一种可持续的资源化利用技术。但由于其中可能含有多环芳烃(PAHs)、重金属等污染物,具有潜在的环境风险,如何制备环境友好的生物炭成为后续利用的先决条件。设置热解温度为500℃,升温速率为10℃/min时,采用4种不同热解时间(1~4 h)制备污泥基生物炭,通过提取测试发现热解后PAHs均明显小于原污泥中的含量;各组分含量及PAHs总量均随着热解时间的增加先增大后减小。2 h的热解时间利于原污泥中有机质充分反应生成新的PAHs,因此PAHs总量达到最大值,超过农用限制;但由于未检出毒性最强的BaP及DahA,其毒性当量(TEQs)反而最低。1 h热解时间虽PAHs总量未超过农用标准,但TEQs最大,超过国际生物炭协会规定的阈值。综合PAHs含量和TEQs的限值,热解时间3,4 h制备的污泥基生物炭更具安全性。从节约能源的角度出发,建议选用3 h作为污泥基生物炭的热解时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号