首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
针对办公环境PM2.5的净化问题,现场测试了以3种不同过滤面积的驻极体空气过滤器为核心过滤元件的空气净化器的过滤性能,并与普通高效微粒空气过滤器(high-efficiency particulate air,HEPA)、初效碳纤维滤层和活性炭滤网等进行了对比.测试点为上海某三楼办公室座位区离地面1.1m处人体坐姿呼吸平面.采用蜡烛烟雾作为室内微细颗粒污染物的来源.分别测试了40 min内PM2.5的质量浓度衰减值和相应运行功率,并计算了净化器处理风量和洁净空气量.结果表明,过滤面积在0.20~0.54 m2范围内驻极体过滤器的过滤效率随面积增加而提高;过滤面积为0.29 m2的驻极体处理风量最大;以洁净空气量与功率的比值作为指标,可以直观判断出净化效果最好的是初效滤网叠加过滤面积为0.54m2的驻极体过滤器;该工况下40 min内PM2.5浓度衰减率与HEPA几乎相同且均接近70%,但是洁净空气量大于HEPA.  相似文献   

2.
基于浓度守恒原理建立了一次回风空调系统室内PM_(2.5)浓度模型,研究了过滤器分别安装在新风段、回风段和送风段时过滤效率和新风量的变化对室内PM_(2.5)浓度的影响。模拟结果表明:在室外PM_(2.5)浓度大于室内初始值的条件下,过滤器安装在送风段或回风段时,减少新风有利于室内PM_(2.5)污染控制,过滤器安装在新风段时,根据过滤器效率调节新风,过滤效率小于临界效率,减小新风有利于室内污染控制;在室外PM_(2.5)浓度小于室内初始值的条件下,过滤器安装在送风段或新风段时,增加新风有利于室内PM_(2.5)污染控制,过滤器安装在回风段时,也存在临界效率,过滤效率小于临界值,增加新风有利于室内PM_(2.5)污染控制。  相似文献   

3.
利用质量平衡方程建立了一次回风定风量系统室内PM_(2.5)浓度模型,并对新风PM_(2.5)浓度、新风量、室内污染源、过滤器效率、过滤器安装位置等因素对室内PM_(2.5)浓度的影响进行了模拟分析。模拟结果表明:新风PM_(2.5)浓度和室内污染源强度的变化对室内PM_(2.5)浓度均有较大影响;新风量越大,室内PM_(2.5)浓度受新风PM_(2.5)浓度变化的影响越大;将过滤器分别安装在送风段、新风段和回风段新风比为0.1时,过滤器安装在送风段效果最好,安装在新风段最差,新风比为0.8时,过滤器安装在送风段效果最好,安装在回风段最差;过滤器安装在送风段时,过滤器效率越高,室内PM_(2.5)浓度越低,波动越小。  相似文献   

4.
细颗粒物(PM_(2.5))随空调新风进入室内,和室内产生的PM_(2.5)粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM_(2.5)浓度与CO_2体积分数双组分模型,提出了适用于某会议室不同室内外PM_(2.5)源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM_(2.5)散发源、温和天气室内有无PM_(2.5)散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM_(2.5)浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。  相似文献   

5.
基于计算流体力学(CFD),采用FLUENT中的多孔介质模型对褶型空气过滤器进行数值模拟研究,通过模拟计算和实验研究得到了空气过滤器的一些阻力性能。结果表明,褶型空气过滤器在过滤气体中的杂质时,过滤器的阻力随着进口风量的增大而增大;而增加过滤器的褶数会增大过滤器的过滤面积,过滤器的过滤面积增大之后过滤器的过滤速度会相应减小,由此可以减小过滤器的阻力。但是增加过滤器的褶数之后会相应的改变过滤器滤芯的褶间距,褶间距的大小会对气流的流动产生影响。气流的流动会影响过滤器的阻力。这些研究可以为过滤器滤芯的设计及应用提供一定的依据。  相似文献   

6.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

7.
测定了不同孔径结构的无纺布和聚偏氟乙烯(PVDF)微滤膜电晕前后对Particulate Matter 2.5(PM_(2.5))的过滤性能,研究了材料的孔径与结构、过滤气流量、电晕放电对PM_(2.5)过滤效率的影响。结果表明,聚酯无纺布和PVDF微滤膜对PM_(2.5)的过滤性能差别较大,电晕放电处理技术能有效提高过滤介质对PM_(2.5)的过滤效率。过滤介质有效过滤面积为10.2 cm~2、过滤气流量为4 L/min时,克重数为50 g/m~2的聚酯无纺布电晕处理后对PM_(2.5)的过滤效率为77%,过滤压降为2.3 k Pa;而孔径分布为0.7~1.0μm的PVDF微滤膜电晕处理后对PM_(2.5)的过滤效率达到99.79%,过滤压降为2.2 k Pa,具备了高效低阻的性能。  相似文献   

8.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

9.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

10.
为了解中国北方农村地区冬季室内外PM_(2.5)污染特征,选择河北唐山某农村燃煤与非燃煤室内外PM_(2.5)进行实验研究。结果表明:(1)燃煤采样点室内外PM_(2.5)分别为47.9~370.0、14.8~145.0μg/m~3,非燃煤采样点室内外PM_(2.5)分别为13.6~217.0、10.9~131.0μg/m~3。(2)室内外PM_(2.5)浓度具有一定的相关性。(3)采样期间的20d内,根据《环境空气质量标准》(GB 3095—2012)二级标准(PM_(2.5)24h均值限值为75μg/m~3),燃煤采样点室外PM_(2.5)超标率为10%,而非燃煤采样点为5%;根据GB 3095—2012一级标准(PM_(2.5)24h均值限值为35μg/m~3),燃煤采样点室外PM_(2.5)超标率为35%,而非燃煤采样点为20%;根据《建筑通风效果测试与评价标准》(JGJ/T 309—2013)规定室内PM_(2.5)的日均值应小于75μg/m~3,燃煤采样点室内PM_(2.5)超标率为65%,而非燃煤采样点为35%。  相似文献   

11.
室内空气污染对人类健康的影响日益受到关注,目前空气净化系统作为室内空气污染最有效的控制方式,逐渐受到人们的青睐。针对市场上常见的空气净化器和新风净化机这2种空气净化系统,为探究2种系统净化方式的异同,分别构建了内循环、外循环净化理论模型,实际实验验证模型具有正确性。应用模型对影响两系统净化效果的因素进行分析,结果表明,相同条件下,空气净化器对PM_(2.5)去除效率高于新风净化机,且均随着风量、一次通过净化效率、时间的增大而升高,随着房间体积的增大而降低,新风净化机存在最佳建筑物换气次数。室外PM_(2.5)浓度不影响2种空气净化系统对PM_(2.5)的去除率,但随着室外浓度增大,室内PM_(2.5)剩余浓度升高。  相似文献   

12.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

13.
PM_(2.5)以其对环境空气质量及人类健康的巨大威胁而逐渐引起了专家学者的关注。以西南地区典型山地城市——重庆市主城区为研究区,利用多元线性回归方法和地理信息系统(GIS)技术,基于2013—2017年冬季(1、2、12月)原重庆市环境保护局发布的17个空气环境监测站点实测数据,同时考虑自然及社会经济因素,构建了基于多因素的多元回归模型,模拟了重庆市主城区2013—2017年冬季PM_(2.5)平均浓度的空间分布状况。结果表明:PM_(2.5)浓度受多因素的影响,其中缓冲半径1 500m内建设用地面积、1 000m内林地面积、2 500m内产业点密度、1 500m内道路长度及高程影响较大;通过多因素与PM_(2.5)浓度的相关性建立的回归模型,能有效模拟PM_(2.5)浓度的空间分布特点,重庆市主城区冬季PM_(2.5)平均浓度的空间分布呈现中西部高、北部和东南部较低的格局;2013—2017年冬季PM_(2.5)平均浓度有下降的趋势,2015年冬季下降幅度尤为明显。此研究结果对探讨PM_(2.5)浓度的空间分布特点有一定的应用价值,可为减轻空气PM_(2.5)污染及提高城市空气质量提供重要的科学依据。  相似文献   

14.
雾霾对人类生活生产的影响日益严重,雾霾治理的研究逐渐受到重视,然而自然雾霾天气的不可预测性增加了研究难度。根据雾霾的组成特点,设计并搭建了一套人工模拟雾霾装置,对雾霾颗粒物的沉降效果进行浓度监测和分析。模拟结果表明:各种环境下,PM_(10)的浓度和沉降速率最高,总浓度占比保持在40%以上,PM_(2.5)浓度占比约为35%,PM_1浓度最低,仅占20%~25%;有风环境下,颗粒物的沉降速度明显提高,当沉降时间达到130 min后,PM_1的浓度达到20%以下。装置成功模拟了100 min以上的重度雾霾以及20 min的中度雾霾,可为雾霾治理的研究提供稳定可控的实验环境。综合上述结果,将PM_(2.5)和PM_1凝结成PM_(10),可加速雾霾的消散,对雾霾治理具有重要参考价值。  相似文献   

15.
为探明空调房间气流形式与通风量对室内微生物气溶胶的影响规律,在一个标准气流实验室,使用Andersen六级撞击式空气采样器对空气中的细菌与真菌气溶胶进行采样,分析了其浓度变化特点,及其与大气细颗粒物PM_(2.5)的相关关系。结果表明,晴朗天气下,气流室内不同气流形式和通风量对微生物气溶胶浓度的影响不同。总体来说,不管是哪种气流形式,通风量的增加均在一定范围内降低了室内微生物气溶胶及大气细颗粒物浓度,其中细菌气溶胶和PM_(2.5)在通风方式为侧面送风侧面排风时的去除效果最好,且分别在换气次数为3次/h和4次/h时其浓度达到最低,其去除效率分别为88.5%和42%,而真菌气溶胶在侧面送风顶面排风时的去除效果最好,在4次/h浓度最低,去除效率为6%。研究结果可以为探究室内环境空气质量及控制室内微生物污染提供基础数据。  相似文献   

16.
于2014年夏季,通过观测海淀公园不同区域沿道路不同宽度处PM_(2.5)浓度,研究PM_(2.5)浓度日变化规律、水平梯度分布规律、净化效益及其影响因素。结果表明,海淀公园内PM_(2.5)浓度日变化规律呈白天低晚上高的趋势,09:00—15:00时PM_(2.5)浓度达到国家标准Ⅱ类功能区浓度质量要求,05:00时PM_(2.5)浓度最高。不同观测区域一定宽度范围内出现PM_(2.5)浓度积聚,之后开始下降。总体上,海淀公园在13:00时对PM_(2.5)浓度净化效益最显著,09:00时净化效益最差。环城高速路区域与城市主干道区域165 m以上宽度处、城市次干道区域60 m以上宽度处为正净化效益,并维持正净化效益。海淀公园内PM_(2.5)浓度与气象因子之间相关关系表明,PM_(2.5)浓度与平均温度、相对湿度呈显著相关,与其他气象因素没有显著相关性。  相似文献   

17.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

18.
基于光散射法研制了一种PM_(2.5)在线监测系统,运用该系统对PM_(2.5)质量浓度进行实时监测。鉴于PM_(2.5)在空气质量评价中仅作为一个参考指标,专门针对PM_(2.5)的评价机制研究较少,将层次分析法与模糊评价法相结合,对一段时间内PM_(2.5)的浓度进行评价,得到时段内空气PM_(2.5)的质量状况。模糊评价法可很好地反映评价等级划分的模糊性和连续性,层次分析法能够将复杂的系统进行定量处理,评价结果符合实际情况。  相似文献   

19.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

20.
通过建立颗粒物穿透率与渗透通风房间换气次数的数学模型以及室内颗粒物浓度集总参数模型,对常州市某住宅建筑室内颗粒物污染特征进行分析,通过实验验证了颗粒物穿透率、室内颗粒物浓度模型的准确性。计算结果表明,对于室内无污染源的渗透通风房间,粒径为0.5、1.0、2.5μm的颗粒物以及PM_(2.5)穿透率随换气次数的增大而增加;当换气次数从0.2次·h~(-1)增加至0.5次·h~(-1)时,PM_(2.5)穿透率由70%增大至88%,增加25.7%。对于用香烟烟雾作为颗粒污染物尘源的房间,空气净化器的实际洁净空气量CADR值为152 m~3·h~(-1),相比实验舱标定工况320 m~3·h~(-1)衰减52.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号