首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选用巨大芽孢杆菌(Bacillus megatherium)作为实验菌种,以餐厨垃圾湿热处理脱出液为发酵培养基制作解磷液态菌肥。将巨大芽孢杆菌接种于餐厨垃圾湿热处理脱出液中进行培养并确定最佳发酵时间,考察初始p H值、接种量、培养温度、摇床转速、装液量和脱出液与水的混合比例对活菌数的影响。结果表明:巨大芽孢杆菌在餐厨垃圾湿热处理脱出液中最佳发酵时间为36 h,发酵最佳初始p H值、接种量、培养温度、摇床转速、装液量和脱出液与水的混合比例分别为7.5、2%、30℃、210 r/min、50 m L(250 m L锥形瓶)和1∶1。巨大芽孢杆菌在餐厨垃圾湿热处理脱出液中进行培养后可达到农业部规定的液态菌肥的活菌数(2×108cfu/m L)标准。  相似文献   

2.
本研究探讨了餐厨垃圾废水用作发酵基质生产液态解磷巨大芽孢杆菌菌肥的可行性.结果表明,餐厨垃圾废水培养的巨大芽孢杆菌经过3~4d的调整期即进入对数生长期,第6~7d活菌数达到最大,而经过湿热预处理得到的II类废水较I类废水更适宜用作巨大芽孢杆菌的培养基质,其菌液活菌数是I类废水培养的活菌数的5倍(4.8×1015CFU/mL).废水中的盐分对巨大芽孢杆菌的生长代谢影响显著:活菌数随着NaCl含量的增加先升高后快速降低,最利于菌种培养的NaCl浓度为10g/L.pH值和温度极显著影响巨大芽孢杆菌的生长,而摇床转速和接种量对菌株培养影响不显著,正交试验确定的较优培养条件为pH=8、T=35℃、转速80r/min、接种量2%(V/V).餐厨垃圾废水制备的解磷菌肥可实现土壤中固化磷的有效磷化:施用0.025‰~2.5‰质量比例解磷菌剂的土壤生长的黄豆苗干重可达到按照5‰质量比例施加无机复合肥生长的黄豆苗的70.7%~84.5%,其中微生物菌肥的最佳施用量为0.25‰.  相似文献   

3.
以餐厨垃圾湿热处理脱出液为发酵培养基,选用圆褐固氮菌(Azotobacter chroococcum)作为实验菌种制作固氮液态菌肥。测定了圆褐固氮菌的主要生理特性,将其接种于餐厨湿热处理脱出液中进行培养,确定最佳发酵时间,并分别测定发酵的最佳初始p H值、接种量、培养温度、摇床转速、装液量、脱出液与水的混合比例。结果表明:圆褐固氮菌在餐厨湿热处理脱出液中最佳发酵时间为36 h,发酵最佳初始p H值、接种量、培养温度、摇床转速、装液量、脱出液与水的混合比例依次为7.5、1%、30℃、150 r/min、50 m L(250 m L锥形瓶)、1∶1。圆褐固氮菌在餐厨垃圾湿热处理脱出液中进行培养后,可达到液态菌肥的活菌数标准。  相似文献   

4.
为优化餐厨垃圾油水分离工艺条件,采用单因素试验考察了原液加水量、p H值、加热温度、搅拌强度和工业盐用量等条件对油水分离效果的影响,最佳参数通过L9(34)正交试验确定。结果表明:原液加水量、加热温度、pH值、搅拌时间、工业盐用量宜分别控制在40%、75~85℃、1.0~3.0、20 min和1.0%~2.0%;影响油水分离效果的因素显著性关系为p H值加水量加热温度工业盐用量;最佳油水分离条件为加水量40%、pH值3.0,工业盐用量2.0%、加热温度80℃、搅拌时间20 min,在此条件下的分离出的油量为234.93 g/L。  相似文献   

5.
根据大庆市餐厨垃圾成分特征,对大庆市餐厨垃圾预处理工艺进行介绍,进一步对大庆市餐厨垃圾厌氧消化工艺条件进行对比分析,得出“中温、湿式”厌氧消化工艺适合于大庆市餐厨垃圾处理,以实现大庆市餐厨垃圾的无害化、减量化和资源化。  相似文献   

6.
顺着城市化的急速发展,餐厨垃圾已成为目前城市环境保护的重点。本文通过分析餐厨垃圾的特点,阐述当前餐厨垃圾处理的方式。为研究对堆肥产品的应用可行性,筛选了以餐厨垃圾堆肥产品为原料的不同基质的最佳配方。以黑麦草为例,将餐厨垃圾堆肥、珍珠岩和泥炭按比例混和制成基质,通过栽培试验观察并测试发芽率、株高、SPAD值等生物指标,筛选出适宜育苗和生长的基质,得出最佳的配方。实验结果表明:以腐熟的餐厨垃圾堆肥为原料配制基质,以黑麦草为供试作物,检验不同配比基质的生物效应。筛选出适宜黑麦草生长的最佳基质配方是:泥炭:堆肥:珍珠岩(v/v)=0.6∶0.4∶1.4)。  相似文献   

7.
采用商品化的餐厨垃圾降解菌剂和自主筛选的抗酸化复合菌剂制备餐厨垃圾液态有机肥,对比分析不同菌剂对餐厨垃圾制备液态有机肥过程中固液两相物质转化的影响,阐明餐厨垃圾制备液态有机肥过程中有机质、糖类、粗蛋白等物质的转化规律。结果表明:2组菌剂均可降低餐厨垃圾中的有机质和粗蛋白浓度,提高液相游离氨基酸浓度;其中接种抗酸化复合菌剂效果更佳,处理后餐厨垃圾固相有机质、粗蛋白浓度下降比例分别为1.17%、15.41%,分别是餐厨垃圾降解菌剂组浓度下降比例的3.66和1.66倍;反应96 h时,液相游离氨基酸浓度达到770.6 mg/L,是餐厨垃圾降解菌剂组浓度的1.24倍;前48 h时,抗酸化菌剂组液相中总糖和还原糖利用率均达到91%以上,而餐厨垃圾降解菌剂组均仅为28.52%。抗酸化复合菌剂可有效促进餐厨垃圾中大分子有机物转化为可溶性小分子有机物以及游离氨基酸,有望为餐厨垃圾高值化液态有机肥的制备提供技术支撑。  相似文献   

8.
为研究施用餐厨垃圾厌氧消化沼液制备的液态菌肥对农田土壤的影响,以中国北方典型作物冬小麦和水稻土壤为研究对象,分析在农作物整个生长周期中土壤理化性质的变化规律。结果表明:施用餐厨垃圾厌氧消化沼液制备的液态菌肥可显著提高冬小麦和水稻土壤中有效氮磷含量。冬小麦土壤液态菌肥最适宜施加量为500 L/亩(1亩=666. 67 m2,下同),此时土壤中有效磷含量最高增长到94. 00 mg/kg,最大增幅为81. 12%;速效氮含量最高增长到1673. 00 mg/kg,最大增幅为84. 88%。水稻土壤液态菌肥最适宜施加量为400 L/亩,土壤中有效磷含量最高增长到220. 80 mg/kg,最大增幅为137. 22%;速效氮含量最高增长到1140. 00 mg/kg,最大增幅为127. 07%。冬小麦和水稻土壤中可溶性全盐和Cl-含量均有轻微的积累现象。通过RDA分析,冬小麦与水稻种植土壤中总磷、总氮、Cl-等与液态菌肥施加量均呈正相关,表明液态菌肥对养分的增加起到促进作用。施用餐厨垃圾厌氧消化沼液制备的液态菌肥对提高农作物土壤有机组分、改善土壤肥力具有重要意义。  相似文献   

9.
餐厨垃圾厌氧消化工艺的影响与优化   总被引:2,自引:1,他引:2  
邵琳  朱光灿 《环境科技》2008,21(6):56-59
从厌氧消化工艺选择、产甲烷性能优化和联合消化等3个方面,概述了近年来国内外餐厨垃圾厌氧消化产甲烷工艺的研究进展,比较了国内外的研究差异,提出我国餐厨垃圾厌氧消化处理产甲烷性能优化及工业化应用的研究方向。  相似文献   

10.
在餐厨垃圾处理过程中,餐厨垃圾渗溶液对环境危害极大。餐厨垃圾渗滤液的基本处理方法有物理化学处理法、生物处理法和土地处理法。对餐厨垃圾进行固液分离,将得到的渗滤波的水相和油相进行分离,其中水相通过各项污水处理方法达到排放标准排放,油相物质通过过滤、蒸馏等方式得到油脂产品,达到资源化、无害化,产生了一定的经济效益与社会效益。  相似文献   

11.
选取固相萃取GC-MS法定量检测喷涂废水中四种邻苯二甲酸酯类(PAEs),运用正交设计法,研究了pH、洗脱剂、洗脱体积、洗脱速率和水样流速对废水中PAEs回收率的影响。结果表明,pH为2.5时回收率最佳(均100%);在该pH下,洗脱剂对4种PAEs的回收率影响最大,水样流速次之,洗脱速率与洗脱体积对4种PAEs的回收率影响相对较小。样品前处理最优参数为:水样流速8mL/min、洗脱剂为乙酸乙酯、洗脱体积4mL、洗脱速率2mL/min;该条件下4种PAEs的线性范围为0.2~8.0μg/mL,相关系数均0.99,喷漆废水中平均加标回收率为61.1%~103%,相对标准偏差为3.1%~14.6%,均可满足试验要求。  相似文献   

12.
生物表面活性剂产生菌的筛选及培养条件优化   总被引:1,自引:0,他引:1  
采用富集培养、蓝色凝胶平板筛选和发酵液排油活性测定的方法,从沈阳蜡化厂活性污泥中分离筛选到一株产表面活性剂菌株,并通过摇瓶发酵实验对该菌株产表面活性剂的培养条件进行了优化.结果表明:该菌株产表面活性剂的最佳碳源为废油,氮源为尿素,初始pH值为7.0,接种量为5%,培养温度为35℃,培养72 h后发酵液排油圈直径可达6....  相似文献   

13.
该研究采用Rashid N p-nPP比色法,通过单因素实验和正交实验对可生物降解聚丁二酸丁二醇酯(PBS)的铜绿假单胞菌产脂肪酶条件进行了优化。研究结果表明:最适培养条件为:温度29℃,摇床转速120 r/min;最佳培养基为:蔗糖0.5%,硫酸铵0.05%,硫酸亚铁0.005%,Tween-60与Span-80按1:1复配乳化剂0.5%,接种量5%,培养基初始pH 9.0。优化后酶活可达33.741 84 U/mL。  相似文献   

14.
为了提高能源微藻——富油卵形扁藻的生物量,以f/2培养基作为培养基,对营养盐氮(NaNO3)、磷(KH2PO4)、铁(FeCl3)、不同人工海水进行优化,采用单因素和L9(34)正交试验进行优化。结果表明:Fe3+的摩尔浓度为0.08 mmol/L、KH2PO4的质量浓度为11 mg/L、NaNO3的质量浓度为0.3 g/L和人工海水的2号配方适于富油卵形扁藻的生长,在以后的后续试验中均以此培养基配方进行培养。该海藻在优化后的培养基中生长情况良好,稳定期最大干重生物量可达452 mg/L,可作为后续生物柴油生产的原料。  相似文献   

15.
分体式膜-生物反应器在废水处理中的工艺条件   总被引:11,自引:3,他引:11  
对分体式膜-生物反应器(RMBR)处理废水进行了研究.进水CODCr:312~584mg/L,RMBR的出水CODCr在运行4d后<15 mg/L并稳定.向生物反应器添加0.5g/L(混合液)的粉末活性炭(PAC)后出水CODCr<4.22mg/L.膜侧污水流速在0.9~1.9m/s范围内,临界膜通量随膜侧污水流速的增大而增大.添加PAC,组合添加PAC和Al2(SO4)3·18 H2O均可有效提高临界膜通量.在膜侧流速1.9m/s的条件下,临界膜通量从72L/(m2·h)分别增至76L/(m2·h)和81 L/(m2·h)在22℃~30℃范围内,每升高1℃可提高膜通量1.9%.在连续运行100d中,RMBR可在无任何物理,化学清洗的条件下运行14d而透膜压力无增大,膜通量不降低.对于已污染的膜,水清洗、水碱共间清洗、水碱酸共同清洗可分别恢复至新膜膜通量的47%、83%、94%.  相似文献   

16.
化工品的滥用引起的水体磷含量超标严重破坏了水体质量,给环境治理造成重大负担。为提高污水排放前的除磷效率,文章从天然湖泊底泥中筛选出高效除磷菌。采用稀释涂布法分离菌株,透明水解圈初筛、水样除磷率复筛筛选除磷菌,对菌株进行16S rRNA测序及系统发生树分析鉴定,确定该菌株分类。通过单因素试验和正交试验,对该菌株的碳源、氮源、无机盐和初始pH值培养条件进行优化。结果表明,筛选到一株高效除磷菌S21,其与地衣芽孢杆菌(Bacillus licheniformis)亲缘关系较近,且形态特征和生理生化特征基本相符。最佳培养基配比为蔗糖质量分数0.50%、豆饼粉质量分数0.70%、KCl质量分数0.20%,培养基初始pH值为7,发酵时间为18 h,菌体浓度OD600达到3.2。菌株S21被鉴定为地衣芽孢杆菌(Bacillus licheniformis),其在高磷水体中具有较高效率的除磷作用。  相似文献   

17.
为了提高微藻的生物量及油脂产量以降低微藻生物柴油的生产成本,采用光异养培养模式对蛋白核小球藻进行培养,确定其最适生长的碳源为葡萄糖,氮源为大豆蛋白胨.采用响应面设计的方法对蛋白核小球藻Chlorella pyrenoidosa-15光异养培养过程中的最佳碳氮源浓度进行了优化,在葡萄糖含量为17.53 g.L-1,大豆蛋白胨含量为8.67 g.L-1时,生物量最大产量为0.63 g.(L.d)-1,与模型预测结果[0.62 g.(L.d)-1]基本吻合,此时其油脂含量为19.25%,油脂产量达到121.3mg.(L.d)-1.污水养殖结果显示,在以北京市城市生活污水为培养基的情况下,微藻Chlorella pyrenoidosa-15对污水具有良好的净化能力,COD的去除率达到80.9%,总氮的去除率达到69%,同时其也具有较好的产油效率,生物量和油脂含量分别可达到1.00 g.L-1和24.12%,具有进一步研究的理论及应用价值.  相似文献   

18.
沼液SBR处理出水养殖螺旋藻   总被引:3,自引:1,他引:2  
蔡小波  郁强强  刘锐  赵远  陈吕军 《环境科学》2017,38(7):2910-2916
养猪沼液氮磷等营养物质丰富,可作为廉价的螺旋藻培养基,但其成分复杂,尤其是高氨氮等因素严重抑制螺旋藻的生长.采用序批式生物反应器(sequencing batch reactor,SBR)降低沼液中的氨氮浓度,通过改变进水中化学需氧量(chemical oxygen demand,COD)与总氮(total nitrogen,TN)的比值,研究了沼液中的亚硝态氮及硝态氮的保留情况,为螺旋藻生长提供氮源.通过对比螺旋藻在不同工况出水中的生长情况,以及氮元素的保留情况,筛选出最佳SBR工况.摇瓶试验结果表明,当进水COD/TN=3.0,出水中氨氮、硝态氮、亚硝态氮浓度分别为51.2、91.6、213.1 mg·L~(-1),此时螺旋藻具有较快生长速率,产率达到0.084 g·(L·d)~(-1).在此基础之上,通过放大螺旋藻培养规模至120L,研究了螺旋藻在室外大棚中的生长情况及螺旋藻对沼液中氮、磷元素的去除,结果表明螺旋藻在室外依然生长良好,培养10 d后,产率为(0.075±0.003)g·(L·d)~(-1),螺旋藻蛋白含量达到60%左右,养殖出水中氨氮去除率达到99%.  相似文献   

19.
食品企业污水中含有各种无机污物和有机污物.其中夹带的致病菌将导致多种疾病的爆发和流行.严重威胁着人类的健康。传统的细菌分离、培养和鉴定技术操作繁琐且耗时长(一般需4~7d)。为了快速.准确地检测食品企业污水中存在的细菌,建立了一种采用基因芯片技术对食品企业污水中常见细菌检测和鉴定的实验方法(需时4h)。实验中设计了8对特异引物并成功分成2组混合引物进行多重PCR反应:BI物Ⅰ为Kp+HlyA+InvA+ipaH,引物Ⅱ为Cadc+Oprl+Ent+23SrRNA。效果良好。实验确定了适宜的PCR反应循环数为35个循环,适宜的杂交温度为48℃。用实验制备的基因芯片对模拟水样检测结果的准确率达100%,说明该基因芯片对目的细菌特征基因的检测结果是可靠的。用该方法对食品企业污水水样进行检测具有高准确率,为今后更大规模的检测研究奠定了基础。  相似文献   

20.
文章用厌氧颗粒污泥接种启动UASB反应器,通过调节碱度和出水回流来实现浓缩果汁废水在低碱度下的稳定运行。研究结果表明:经35天UASB反应器可完全启动,负荷为9.5gCOD(/L·d),COD去除率在80%以上;回流比为0.3,进水碱度和pH值分别为1500mg/L和6.75、1000mg/L和6.52时,反应器能够稳定运行;采用出水回流的方法可以使酸性的浓缩果汁废水厌氧处理大幅度降低用碱量甚至完全不加碱的条件下实现稳定运行,本试验在回流比为8~10时,反应器也有很好的处理效果。通过对其控制条件实验室研究,显著的降低了浓缩果汁废水的处理成本,在工程上具有广泛的应用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号