首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2015年12月21日—2016年2月29日在南京北郊进行了大气细颗粒物PM_(2.5)的观测,并分析其中主要水溶性离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))浓度以及碳质组分(OC、EC)含量.结果表明,观测期间南京北郊冬季大气细颗粒物(PM_(2.5))污染较为严重,二次离子(NO_3~-+SO_4~(2-)+NH_4~+)为主要污染成分,占PM_(2.5)浓度的47%.对36个观测日进行SO_4~(2-)-NO_3~--NH_4~+三相聚类,发现3种离子在整个体系中的配比存在差异.排放源类型所造成的前体物的不同以及NH_4~+与SO_4~(2-)、NO_3~-的结合方式是造成这种差异的主要原因.OC与EC的变化趋势相似,OC含量较高,而且浓度波动幅度较大.OC/EC的值为2.63±0.90,说明普遍存在二次反应产生的SOC.K+/PM_(2.5)比值法表明,除燃煤与机动车尾气排放以外,生物质燃烧亦是PM_(2.5)污染的排放源.  相似文献   

2.
张毅 《环境化学》2020,39(6):1699-1708
采集了2017—2018年秋冬季长治市审计局站、监测站、清华站等3个监测站点的大气PM_(2.5)样品,分析了其元素、水溶性离子及碳质组分特征,并利用化学质量平衡模型(CMB)对PM_(2.5)进行来源解析.结果表明,采样期间长治市PM_(2.5)浓度为67.9μg·m~(-3),其中审计局站PM_(2.5)浓度最高(70.6μg·m~(-3)),其次为监测站(70.0μg·m~(-3))和清华站(63.0μg·m~(-3));二次无机离子(SO_4~(2-)、NO~-_3、NH~+_4)平均浓度(20.7μg·m~(-3))占PM_(2.5)浓度的30.5%,与大量排放到大气中的SO_2、NO_2二次生成有关;OC(12.6μg·m~(-3))和EC(6.6μg·m~(-3))分别占PM_(2.5)的18.6%和9.7%;OC/EC为2.06,且SOC(5.9μg·m~(-3))在OC中占比高达63.1%,表明长治市秋冬季二次污染较重;典型地壳元素Si和Ca占元素组分平均浓度的29.8%和22.8%,说明扬尘污染对长治市PM_(2.5)的有一定影响;源解析结果表明,长治市秋冬季PM_(2.5)主要来源为:机动车源17.0%、燃煤源16.5%、扬尘源14.6%、二次硝酸盐13.9%、二次硫酸盐11.0%、二次有机气溶胶10.8%、工艺过程源9.3%、生物质燃烧源1.9%、其他源5.0%.因此,为进一步降低长治市环境空气中PM_(2.5)的污染,需在加强管控机动车,燃煤和扬尘等一次排放源的基础上,降低一次污染物SO_2、NO_2等的排放,从而实现对二次污染源前体物的控制.  相似文献   

3.
为探究太原市采暖季PM_(2.5)水溶性无机离子组成及其来源,于2017年11月至2018年3月在太原城区连续采集大气颗粒物PM_(2.5)样品共151个,并于离子色谱仪中分析样品的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+).结果表明,太原市采暖季PM_(2.5)质量浓度的平均值为77.89±47.16μg·m~(-3),总水溶性无机离子质量浓度平均值为53.21±29.76μg·m~(-3),占PM_(2.5)的68.3%±23.3%,其中SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中最主要的离子成分,NH_4~+在PM_(2.5)中主要以NH_4NO_3、(NH_4)_2SO_4与NH_4Cl等形式存在,NH_4~+、NO_3~-、K~+、SO_4~(2-)和Cl~-等5种离子的爆发性增长对灰霾天污染贡献最大.随着气温回升,硫氧化率和氮氧化率均有一定程度的升高,大气中存在明显的气溶胶二次转化过程.主成分分析表明,燃煤源和二次污染源是太原市采暖季灰霾期间的主要污染源,土壤扬尘为清洁天的首要污染源,大气污染以固定污染源为主,移动污染源为辅.后向轨迹模型显示,采暖季期间气团基本上来自本地和西北方向的内陆排放源.  相似文献   

4.
大气细颗粒物PM_(2.5)是危害人体健康和环境最主要的空气污染物之一,对其水溶性离子的研究是一项非常必要而迫切的工作。文章对乌鲁木齐市中心区域树木年轮实验室和黑山头2013年1月-2014年2月期间采集的大气细颗粒物样品,利用离子色谱仪分析了其中的水溶性离子分布特征,采用硫转化率(SOR)、离子相关性分析等分析其可能来源,结果表明:年轮室和黑山头PM_(2.5)中总离子浓度平均值分别为88.03和65.11μg·m~(-3),分别占PM_(2.5)质量浓度的51.21%和33.8%。年轮室各种离子的季节变化明显:SO_4~(2-)、NO_3~-、Cl~-和NH_4~+表现为冬季秋季春季夏季,Na~+表现为冬季秋季夏季春季,Ca~(2+)表现为秋季夏季春季冬季。SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中主要的离子,(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3是乌鲁木齐PM_(2.5)中水溶性组分的可能结合方式。Cl~-和K~+主要来源于化石燃料和生物质的燃烧排放,Ca~(2+)和Mg~(2+)主要来自土壤、二次扬尘和燃煤。乌鲁木齐大气PM_(2.5)中ρ(NO_3~-)/ρ(SO_4~(2-))为0.40,说明目前固定排放源仍然是乌鲁木齐大气污染物的主要来源。本研究为更深入了解乌鲁木齐市颗粒物污染现状提供参考,同时为确定乌鲁木齐市大气污染治理重点、制定大气污染防治规划提供依据。  相似文献   

5.
以超声萃取/ICP-MS、微波消解/IC(离子色谱)检测技术对保定市(2016年1—4月)PM_(2.5)样品上的水溶性离子、无机元素等无机成分进行分析,并通过PM_(2.5)质量浓度、水溶性离子含量、无机元素相关性等对PM_(2.5)上无机污染物来源进行解析.结果发现:水溶性离子12种,占PM_(2.5)质量60%以上;除NO-2外,所有水溶性离子夜间浓度高于日间,其中NO-3的夜间最低浓度是日间的12倍,SO_4~(2-)、NH_4~+的夜间浓度也是日间的近2倍,此外所有样品中二次离子NO_3~-、SO_4~(2-)、NH_4~+含量最高,分别占水溶性离子的21.1%—60.5%、16.9%—40.0%、2.0%—24.1%;无机元素34种,其中重金属元素12种,其余为地壳、稀有金属及放射性元素,其中除地壳元素日间浓度高于夜间外大部分无机元素夜间浓度高于日间.5种有毒元素中,As超标率大于60%,Pb、Hg均未超出国家环境空气质量标准限值.总Cr日夜浓度分别为2.6—9.0、3.2—12.9 ng·m~(-3),超标率也大于60%.结果显示保定市大气PM_(2.5)上水溶性离子主要来源于机动车尾气排放,其次为燃煤,生物质燃烧及烹饪也有一定的贡献;无机元素主要来源于建筑及土壤扬尘,其次为燃煤及机动车等排放.  相似文献   

6.
快速的经济发展和城市化进程造成我国城市大气污染日益显著,并受到更为广泛的关注.为了解济南市大气细粒子及其化学成分的污染特征,于2013.10.15—2013.11.16和2013.12.24—2014.1.27(总观测天数为62天)利用中流量颗粒物采样器采集了济南市大气PM_(2.5)样品,分析了其中的化学成分,包括水溶性离子、无机金属元素、元素碳(EC)和有机碳(OC),并结合颗粒物质量重构法和主成分分析法探讨了济南市大气细粒子的来源.结果表明,监测期内济南市PM_(2.5)质量浓度严重超标,日均值均高于我国国家环境空气质量标准(GB3095—2012)中的一级标准,最高日均值达到了335μg·m~(-3).水溶性离子、有机碳、元素碳和金属元素分别占总PM_(2.5)浓度的45.3%、34.7%、2.3%、5.6%(秋季),42.8%、32.9%、3.6%、12.5%(冬季).二次水溶性离子NO_3~-、SO_4~(2-)和NH_4~+为主要的水溶性离子,分别占总离子浓度的34.1%、35.6%、9.2%(秋季)和35.2%、30.4%、15.9%(冬季).OC和EC的平均质量浓度分别为33.8μg·m~(-3)和4.3μg·m~(-3),OC/EC比值表明秋季汽车尾气与生物质燃烧对有机气溶胶的贡献较大,而冬季燃煤排放对有机气溶胶的贡献较大.化学质量重构结果表明,秋季济南市细粒子中二次无机盐、海盐、重金属、矿物尘、建筑尘、有机物和元素碳的质量百分比分别为38.6%、1.2%、0.2%、5.4%、1.4%、34.7%和2.3%,冬季分别为34.8%、1.5%、3.5%、7.5%、3.2%、33.0%和3.6%.主成分分析结果表明,汽车尾气及二次转化、燃煤以及冶炼工业排放是济南市大气细粒子的主要来源.  相似文献   

7.
为深入研究北京市采暖季PM_(2.5)中水溶性离子的污染特征及其影响因素,利用大流量采样器结合石英滤膜采集了2016年11月15日—2016年12月31日期间北京市典型污染天的PM_(2.5)样品(19个),采用离子色谱法测定了其中的水溶性无机离子成分,收集了同期北京市的日均气象数据和海淀区日均PM_(2.5)数据。应用热力学平衡模型ISORROPIA-Ⅱ分析了PM_(2.5)样品的酸度值,Traj Stat软件分析气流的72 h后向轨迹,并采用潜在源贡献因子分析法(PSCF)定位了PM_(2.5)潜在污染源的位置,浓度权重轨迹分析(WCWT)法定量解析了潜在污染源对北京PM_(2.5)质量浓度贡献的大小。结果表明:(1)PM_(2.5)的日均质量浓度变化范围为7.6~383μg·m~(-3),均值为114μg·m~(-3),污染天是清洁天的4.4倍;(2)10种水溶性离子的总质量浓度均值为44.61μg·m~(-3),SNA(NO_3~-、SO_4~(2-)、NH_4~+)占总水溶性离子的81.37%,污染天NO_3~-、SO_4~(2-)、NH_4~+质量浓度均值分别为20.35、16.16、8.68μg·m~(-3),分别是清洁天的4.7、3.5、3.6倍;(3)污染天PM_(2.5)酸性比清洁天强,污染天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4,清洁天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3;(4)北京PM_(2.5)及其水溶性离子的污染除受本地污染源影响,还受河北省中部和南部以及内蒙古中部等区域传输的影响;(5)在北京采暖季低大气边界层以及三面环山的特殊条件下,风速和相对湿度是影响北京PM_(2.5)及其水溶性离子污染特征的2个主要气象因素,高湿度低风速的静稳天气条件可以造成以本地污染物为主的大气重污染,此外,一定范围内的低风速可以使周边地区高浓度的污染物传输至北京,加重大气污染。  相似文献   

8.
为全面了解南方典型工业城市郴州市的大气细颗粒物(PM_(2.5))中水溶性离子污染特征及其来源,本研究利用离子色谱对从2016年4月到2017年1月间郴州市6个采样点的PM_(2.5)样品中的9种水溶性离子(SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)、Cl~-、Na~+、K~+、F~-、Mg~(2+))进行分析.研究表明:郴州市的PM_(2.5)浓度范围为23. 3—66.5μg·m~(-3),呈现秋冬高,春夏低的特点.研究区域的水溶性离子质量浓度的变化趋势与PM_(2.5)变化趋势相类似; NO_3~-、SO_4~(2-)、NH_4~+和K~+与PM_(2.5)相关性较好,其中SNA(SO_4~(2-)、NH_4~+、NO_3~-)占PM_(2.5)的比重最高,为18.9%—40.2%.SNA三角图解表明NH_4~+的主要存在形式为(NH_4)_2SO_4,AE/CE均小于1,因此研究区域的PM_(2.5)呈碱性.通过主成分分析可知研究区域的水溶性离子污染来源主要为燃煤、交通、生物质燃烧等燃烧综合源,[NO_3~-]/[SO_4~(2-)]证明该区域的大气污染属于煤烟型污染.  相似文献   

9.
为了探讨兰州市大气细颗粒物中水溶性无机组分的污染特征及来源,采集了2012年冬季和2013年夏季PM_(2.5)样品共40个,并利用离子色谱法对其中的无机离子进行了分析.分析结果显示,兰州市PM_(2.5)中无机离子冬季平均值为39.59μg·m~(-3),夏季平均值为10.71μg·m-3,冬季污染程度远高于夏季,SO_4~(2-)、NH_4~+和NO_3~-是3种最主要的水溶性离子;阴阳离子当量回归分析表明,冬季兰州PM2.5组分偏酸性,夏季偏碱性,离子间的结合方式主要以NH_4NO_3、(NH_4)_2SO_4、NH_4HSO_4和NH_4Cl的形式为主,冬季还有少量KNO_3、NaNO_3、K_2SO_4、Na_2SO_4、KCl和Na Cl存在;[NO_3~-]-/[SO_4~(2-)]比值的均值冬季为0.58±0.22,夏季为0.49±0.20,说明兰州市的冬季大气污染虽然呈现燃煤源等固定源和机动车尾气等流动源并存的复合污染类型,但仍然以煤烟型污染为主,而夏季NO_3~-受高温条件影响比较大,机动车尾气污染仍需引起重视.  相似文献   

10.
为研究成都市冬季PM_(2.5)中碳组分的污染特征和来源,于2019年12月7—28日在成都市进行PM_(2.5)的采集,并利用热光碳分析仪和元素分析仪-同位素质谱仪分别测定了样品中有机碳(OC)和元素碳(EC)的质量浓度以及碳同位素的组成特征。结果表明,成都市PM_(2.5)、OC和EC的平均质量浓度分别为98.23、14.50、2.19μg·m~(-3);OC和EC的相关性较高(相关系数为0.80),表明OC和EC可能具有一致的来源,也有可能是具有较高的混合程度;OC/EC比值大于2.0,表明成都市冬季有二次有机碳(SOC)的形成,且SOC/OC的比值为34.48%;主成分分析结果显示,生物质燃烧、燃煤和汽油车尾气尘混合源是成都市冬季PM_(2.5)碳组分的主要来源,贡献率为59.68%;其次是柴油车尾气尘,贡献率为22.40%;碳同位素组成结果显示,成都市冬季PM_(2.5)碳组分的来源与汽油车尾气排放相关性最强,其次为C3植物燃烧;通过IsoSource模型软件进行计算,可知不同时期各污染源的贡献比例均呈现出汽油车尾气排放C3植物燃烧柴油车尾气排放燃煤C4植物燃烧地质源(农业土壤、扬尘)的规律,但相较于清洁期来说,污染期的汽油车尾气排放和C3植物燃烧污染源所占比例增大。研究结果可为成都市大气污染治理提供理论指导。  相似文献   

11.
为探究重污染天气期间济南市城区和清洁对照点PM_(2.5)及其组分污染特征,于2016年12月31日-2017年1月7日在市监测站和跑马岭进行连续PM_(2.5)样品采集,并对两个点位的PM_(2.5)及其组分(水溶性离子和碳质组分)污染特征进行分析。结果表明,重污染天气期间市监测站PM_(2.5)质量浓度(260±77)μg·m~(-3)是跑马岭(85±17)μg·m~(-3)的3倍,表明该重污染天气过程对济南市城区影响程度明显大于清洁对照点跑马岭。市监测站水溶性离子浓度高低顺序为SO_4~(2-)NO_3~-NH_4~+Cl~-K~+Na~+Ca~(2+)F~-,跑马岭水溶性离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Ca~(2+)F~-。市监测站和跑马岭二次无机离子(SNA)质量浓度分别为(134.7±49.5)μg·m~(-3)和(46.2±19.0)μg·m~(-3),在PM_(2.5)中占比分别是51.8%和54.4%,两个点位PM_(2.5)浓度差别很大,但SNA在PM_(2.5)中占比相差不大。通过NH_4~+计算值与实测值相关性分析可知,市监测站和跑马岭PM_(2.5)中NH_4~+均主要以(NH_4)_2SO_4和NH_4NO_3形式存在。市监测站SOR和NOR分别为0.44和0.32,跑马岭SOR和NOR分别为0.32和0.44,SOR和NOR的值均大于0.1,表明大气中SO_2和NO_2的二次氧化程度较高。采用OC/EC最小比值法估算得到市监测站和跑马岭SOC分别为8.3μg·m~(-3)和1.8μg·m~(-3),分别占OC的38.2%和20.9%,这表明市监测站OC二次反应程度明显高于跑马岭。市监测站有机碳(OC)和元素碳(EC)相关性(R~2=0.57)明显弱于跑马岭(R~2=0.92),表明市监测站OC和EC来源比较复杂,更有利于SOC的生成。  相似文献   

12.
为探讨石家庄市冬季道路积尘中PM_2.5与PM_10的碳组分污染特征和来源,利用移动式采样法对市区不同类型铺装道路积尘进行收集,用热光碳分析仪测定样品中有机碳(OC)和元素碳(EC)的含量并分析其特征.结果表明,OC、EC在PM_2.5中的平均质量浓度为166.54 mg·g~(-1)、25.35 mg·g~(-1),在PM_10中的平均质量浓度为118.31 mg·g~(-1)、20.3 mg·g~(-1),总碳(TC)占PM_2.5中百分比为19.2%,占PM_1013.9%,表明碳组分更容易富集到细粒径颗粒物上;相关性分析表明OC、EC来源大致相同;8个碳组分中OC3的百分含量最高,OC4次之,EC3最低;主成分分析及OC、EC相关分析结果表明冬季道路积尘中的碳主要来自于机动车尾气排放和大气降尘中的燃煤成分.  相似文献   

13.
为探索北京城区大气细颗粒物浓度水平及其碳组分和二次水溶性无机离子的浓度特征,于2014年6月1日至7月15日在车公庄地区使用微量振荡天平(TEOM+FDMS)、EC/OC在线分析仪以及水溶性离子在线分析仪对PM_(2.5)质量浓度及其主要化学组分(OC、EC、SO_4~(2-)、NO_3~-和NH_4~+)进行了实时监测.研究结果表明,北京市城区夏季PM_(2.5)质量浓度平均值为69.0±47.9μg·m-3,PM_(2.5)中OC、EC、SO_4~(2-)、NO_3~-和NH_4~+所占的比例分别为15.8%、2.4%、23.0%、15.7%和19.2%,SNA(SO_4~(2-)、NO_3~-和NH_4~+)合计达到了PM_(2.5)质量浓度的57.9%.研究各组分的日变化特征发现,OC和SO_4~(2-)白天浓度变化较小,夜晚浓度稍高;NO_3~-和NH_4~+则随着光照和温度的增加而逐渐降低;EC呈现出夜晚浓度高白天浓度低的特点.研究各组分的相关性及比值发现,OC和EC的相关系数为0.62,OC/EC大于2.0,说明北京城区夏季存在着较为严重的二次污染;此外,NO_3~-/SO_4~(2-)平均比值为0.68,SOR和NOR的变化趋势基本一致,两者的平均值分别为0.55和0.14.通过分析北京市城区夏季不同浓度级别各组分的变化发现,随着PM_(2.5)质量浓度的增加,OC和EC所占的比例不断降低,而SNA比例则不断升高,其中NO_3~-浓度水平的增加最为显著.  相似文献   

14.
济南冬季大气重污染过程颗粒物组分变化特征   总被引:1,自引:0,他引:1  
为研究济南市冬季大气重污染过程的颗粒物化学组分特征,于2017年11月15日—12月30日在市监测站及跑马岭清洁对照点同步采集PM_(10)和PM_(2.5),并对其质量浓度、水溶性离子及碳组分进行分析,结果表明重污染过程中PM_(2.5)/PM_(10)质量浓度比均超过0.6.NO_3~-(硝酸盐)、SO_4~(2-)(硫酸盐)、NH_4~+(铵盐)、OC(有机碳)浓度及百分占比与颗粒物浓度同步增加,其中NO_3~-、SO_4~(2-)、NH_4~+、OC的浓度增加倍数远大于PM_(2.5)的浓度增加,重污染日市监测站NO_3~-、SO_4~(2-)、NH_4~+、OC质量浓度分别是非污染日的5.1倍、8.8倍、8.3倍、7.0倍,跑马岭重污染日NO_3~-、SO_4~(2-)、NH_4~+、OC质量浓度分别是非污染日的3.0倍、3.9倍、3.7倍、4.6倍;且SO_4~(2-)和NH_4~+质量百分占比涨幅比NO_3~-的大,说明重污染天气下SO_4~(2-)和NH_4~+对PM_(2.5)浓度增加的贡献更大.通过经验公式计算得出市监测站和跑马岭SOC质量浓度分别占OC的82.4%和92.3%,说明重污染期间SOC是OC主要组成部分.二次无机离子和二次有机碳是导致重污染的主因,表明在冬季重污染过程中,大气化学反应非常重要,这可能与空气静稳和湿度较大的气象条件、前体物的大量积累、液相非均相化学过程的加强紧密相关.重污染天气下需要重视NO_2对SO_2液相催化氧化作用,严格控制NO_2的排放.  相似文献   

15.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

16.
为探究舟山市PM_(2.5)及水溶性离子组分的污染特征,于2016年4月、7月、10月和2017年1月在舟山市区3个国控点采集了168个PM_(2.5)样品,利用离子色谱仪测定颗粒物中的9种水溶性离子(Cl~-、NO_3~-、SO_4~(2-)、NH_4~+、K~+、F~-、Na~+、Mg~(2+)和Ca~(2+)),结合气象数据和数值分析手段对舟山市区PM_(2.5)和水溶性离子质量浓度特征、颗粒物酸碱度及二次离子的影响因素(气象参数、前体物)进行研究.结果表明,采样期内,舟山市PM_(2.5)质量浓度时间变化规律为春季冬季夏季秋季,空间分布较为均匀;二次离子是舟山PM_(2.5)主要水溶性组成,且在PM_(2.5)中具有一致的季节变化特征;阴阳离子平衡分析显示舟山市PM_(2.5)整体呈现酸性,并以夏季酸度最低、秋季酸度最高;温度是影响舟山市二次离子浓度的主要气象因素;以燃煤源为主的固定源是舟山市水溶性污染物的主要污染来源,檀枫和临城采样点的SO_4~(2-)和NO_3~-受电厂和燃煤锅炉的污染排放影响严重,普陀区船舶客货运输量大,是普陀点二次离子前体物的主要污染来源.  相似文献   

17.
为研究北京城区PM_(2.5)中有机碳(OC)和元素碳(EC)的浓度水平、季节变化特征与主要来源,于2015年4月至2016年3月在北京西三环交通带附近采集4个季节PM_(2.5)有效样品95组,利用热光反射法测定了PM_(2.5)中OC和EC的质量浓度,并对OC/EC值、OC与EC相关性、二次有机碳(SOC)等特征及污染来源进行了分析.结果表明,采样期间PM_(2.5)平均质量浓度为(109.9±7.99)μg·m~(-3). PM_(2.5)中OC的年平均质量浓度为(13.49±4.32)μg·m~(-3),占PM_(2.5)的13.13%; EC的年平均质量浓度为(5.41±1.83)μg·m~(-3),占PM_(2.5)的5.2%.OC和EC平均浓度及OC和EC在PM_(2.5)中所占比例的季节变化特征均为冬季最高,秋季大于春季,夏季最低.4个季节PM_(2.5)中OC/EC比值均大于2.0,表明各季节存在二次有机碳(SOC)的生成,采用OC/EC最小比值法对SOC含量进行了估算,SOC年平均浓度为(6.88±1.10)μg·m~(-3),占OC含量的50.86%,冬秋季节的SOC浓度水平高于春夏季节.夏季SOC对OC的贡献率为62.22%,高于其他季节.相关性分析表明,OC与EC的相关性在春季(R2=0.9046)和秋季(R2=0.8886)高于夏季(R2=0.4472)和冬季(R2=0.6018),表明春秋两季OC与EC来源相似且相对简单.进一步对PM_(2.5)中8个碳组分质量浓度进行分析显示,北京城区大气碳质气溶胶主要来自汽油车排放和燃煤.  相似文献   

18.
大气细颗粒物(PM_(2.5))与雾霾天气密切相关,PM_(2.5)吸附的有毒有害物质,可能给人体健康带来危害。二次水溶性无机离子(SNA,包括SO_4~(2-)、NO_3~-和NH_4~+)是PM_(2.5)的重要组分,研究PM_(2.5)中SNA污染特征及形成和演化的影响因素,对认识雾霾污染的生消机制,提升人们的生活质量具有重要意义。利用在线气体及气溶胶成分监测系统(MARGA)观测了宁波市滨海地区春季、夏季和秋季大气PM_(2.5)中的SNA和气态污染物的变化趋势,并利用后向轨迹分析研究了不同气团影响下污染物的日变化规律。结果表明,观测期间,SNA在PM_(2.5)中的平均占比约为70.7%,NO_3~-是导致PM_(2.5)污染加重的主导离子。NO_3~-和SO_4~(2-)受气团传输影响较大,来自陆地气团的质量浓度普遍高于海洋气团,来自西北内陆方向的污染物输送是导致宁波空气质量下降的主要原因。宁波大气中的硫氧化率(SOR)较高,SO_4~(2-)主要由SO_2发生二次氧化反应生成;SO_4~(2-)的形成与相对湿度(RH)密切相关,SOR随着RH的增加而显著增大,当RH85%时,大气中的硫氧化物绝大部分以SO_4~(2-)形式存在,SOR接近1;而温度变化对SOR无明显影响;来自西南与东部受海洋显著影响的气团SOR高于来自陆地气团的相应值。夏季RH普遍较高,西南方向气团影响下高浓度的气态污染物(NO_2、O_3、NH_3)可明显促进SO_4~(2-)的生成,一定程度上控制人为气态污染物的排放能有效减少SO_4~(2-)生成。与SOR比较而言,氮氧化率(NOR)和NO_3~-与温度、RH、气态污染物浓度等环境因素的关系比较复杂,暗示多种反应机理共同作用影响氮氧化物的转化。  相似文献   

19.
细颗粒物是大气污染防治的重点内容。分析大气细颗粒物中的水溶性离子组分及其变化,对评价城市空气污染状况和污染物的来源具有重要意义。选取中国东部典型城市长春、北京、上海、杭州和南京作为研究对象,基于2016年11月11日-12月6日大气颗粒物样品采集及其水溶性离子分析,探讨PM_(2.5)中水溶性无机离子浓度变化特征,并利用主成分分析结果分析各类污染源排放对细颗粒物中水溶性离子质量浓度的贡献,以期为区域大气环境质量的改善提供参考依据。结果表明,长春、北京、上海、杭州和南京总水溶性无机离子质量浓度平均值分别为(18.8±9.0)、(34.9±23.3)、(21.8±13.3)、(42.2±21.4)和(62.1±25.9)μg·m~(-3),占PM_(2.5)质量浓度的33.6%-62.1%。二次离子(SIA,包括NO_3~-、SO_4~(2-)和NH_4~+)在总水溶性离子中占比均超过75.0%,说明SIA是水溶性离子的主要组分。SIA占总水溶性离子浓度的百分比随污染程度增强而增加。硝酸盐为5个城市在污染大气下主要的贡献物种。5个城市站点ρ(NO_3~-)/ρ(SO_4~(2-))随着大气污染程度的增加均有不同程度的增加且大于1,说明含氮污染物逐渐成为大气颗粒物中最重要的污染物。除长春硫氧化率(SOR)均值小于0.1外,其他4个城市SOR和氮氧化率(NOR)均大于0.1,说明北京、上海、杭州和南京站点大气中存在较高程度的SO_2和NO_2的二次氧化。北京站点NO_3~-、SO_4~(2-)和NH_4~+以NH_4NO_3和(NH_4)_2SO_4的形式存在,在其他4个城市站点以NH_4NO_3和NH_4HSO_4的形式存在。5个城市水溶性离子主要来源为二次转化、扬尘、生物质和煤燃烧。  相似文献   

20.
为探究安阳市燃煤源排放特征,基于实地调研、抽样调查和部门座谈等方法,利用排放因子法自下而上的估算了2016年安阳市燃煤源颗粒物和碳组分排放清单,利用经纬度坐标和所属乡镇信息,进行了全市PM_(10)、PM_(2.5)、PM_1、EC和OC排放空间分配,并通过对2017年燃煤源相关政策的搜集整理,结合2016年调研情况,对2017年安阳市主要燃煤相关政策颗粒物减排效果进行了估算。结果表明:安阳市2016年燃煤源PM_(10)、PM_(2.5)、PM_1、EC和OC排放总量分别为5 735.03、2 986.61、1 049.40、718.05和385.29 t;散煤燃烧源是PM_(10)、PM_(2.5)、PM_1、EC和OC的主要贡献源,分别贡献了各污染物的70.71%、76.98%、91.81%、85.14%和71.83%;从空间分布来看,排放主要集中在林州市的河顺镇、龙安区的东风乡以及殷都区的纱厂路街道,而排放强度较高的乡镇(街道)主要集中在市区的纱厂路街道、北大街街道、洹北街道、豆腐营街道和东风乡;通过对2017年燃煤源相关政策的搜集整理,结合2016年调研情况,估算2017年燃煤源PM_(10)、PM_(2.5)和PM_1减排量分别为2 735.15、1 410.08和457.61t,分别占2016年燃煤源排放总量的47.69%、47.21%和43.61%。研究显示,2016年安阳市燃煤源颗粒物排放量较大,2017年安阳市采取的燃煤相关政策措施对安阳市燃煤源颗粒物减排效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号