首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究室内地面灰尘中15种多环芳烃(PAHs)污染的时间变化规律,于2012年3—7月对北京市一座办公楼内的某办公室进行了每周一次的连续高密度灰尘样品采集。利用高效液相色谱-荧光检测器检测15种PAHs含量。结果表明,该办公室内灰尘样品中∑PAHs浓度范围为1 180~24 300 ng·g~(-1),平均浓度为8 960 ng·g~(-1)。总体上,检出的PAHs以3环PAHs为主,其中菲占PAHs总量的59%以上,其次是4环和5环PAHs,4环PAHs中占的比重最高,约占4环PAHs总量的34%。该办公室内灰尘中∑PAHs的浓度存在显著的时间变化差异,总体表现为∑PAHs浓度随气温升高而降低的趋势。源解析结果显示,机动车排放源、石油源、木材与煤燃烧是北京市室内灰尘中PAHs的主要来源。健康风险评估结果显示,ILCR皮肤接触ILCR手口摄入,且CR均值大于10-6,说明该采样点的PAHs污染存在"潜在致癌风险"。  相似文献   

2.
在北京城区四环以内采集了33个冬季道路沉积物样品,分析其中多环芳烃(PAHs)的含量、分布特征、来源和生态风险.结果表明,16种多环芳烃(PAHs)∑16PAHs的浓度范围为931.0—2668.7 ng·g~(-1)干重,平均浓度为1602.4 ng·g~(-1)干重,污染物的组成以4环和3环PAHs为主.通过LMW/HMW(低分子量与高分子量PAHs的比值)法、特征比值法和主成分分析法得出,道路沉积物中PAHs主要来自于煤、化石燃料的燃烧以及交通尾气的排放.由TEQBa P分析结果可知,33个采样点PAHs的∑16TEQBa P范围为58.2—324.4 ng·g-1干重,平均值为139.3 ng·g~(-1)干重;所有采样点的∑10TEQBa P范围为33.1—266.8 ng·g~(-1)干重,平均值为95.0 ng·g-1干重,均超过荷兰土壤的目标参考值,说明北京市冬季道路沉积物中PAHs存在潜在的生态风险;其中7种致癌性PAHs(Ba A、Chr、Bb F、Bk F、Ba P、IPY和DBA)的TEQBa P占∑16TEQBa P的96.1%—99.3%,平均值为98.5%,是∑16TEQBa P的主要贡献者,并且Ba P的贡献率最大.  相似文献   

3.
为了解三亚河表层沉积物中多环芳烃分布特征及生态风险,应用加压流体萃取、高效液相色谱检测表层沉积物中16种优先控制PAHs的含量和组成.结果表明,研究区域内表层沉积物中PAHs含量为3.23—493 ng·g~(-1)之间,平均浓度为211 ng·g~(-1),调查区域表层沉积物中PAHs含量与其它区域河流、湖库和海域沉积物中PAHs的含量比较,PAHs含量属于低值水平.调查区域表层沉积物中PAHs含量以3—5环为主,其对总浓度的贡献率为76.6%—100%,平均为84.4%,采用同分异构体比值分析结果显示PAHs主要来源于木柴、煤炭等燃烧源.质量基准法和质量标准法分析表明三亚河表层沉积物中的PAHs含量水平对该区域的生态环境影响较小,但对长期生活在该区域的底栖生物将构成轻微的潜在威胁,应采取相应管控措施,控制多环芳烃排入三亚河.  相似文献   

4.
采集长江安庆段及其沿江湖泊群表层沉积物样品共30个,检测16种多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)含量.结果表明,长江安庆段(4个断面)的∑PAHs浓度范围为36.0—221.6 ng·g~(-1)(干重,下同),平均浓度为137.1#76.5 ng·g~(-1);安庆沿江湖泊群(23个采样点)的浓度范围则为45.5—3608.8 ng·g~(-1),平均浓度为941.5±868.5 ng·g~(-1).研究区域内∑PAHs主要以高环(4—6环,HMW)为主,表明主要受交通运输、船舶油类以及化工厂等高温燃烧排放影响.同分异构体分析进一步表明,PAHs主要来源于燃烧排放,不同湖泊存在不同的潜在来源,嬉子湖受到石油排放源、煤木柴燃烧和石油及其精炼产品的燃烧等多重来源影响,而菜子湖中则主要受木材、煤等燃烧源影响,长江安庆段存在石油直接排放源及其燃烧源共同影响.石门湖和白荡湖则以石油及其精炼产品燃烧源为主.生态风险评价表明,长江安庆段及沿江湖泊群表层沉积物中PAHs处于较低的生态风险状态.  相似文献   

5.
于2015年6月采集日照市岚山化工园区和临沂市罗庄华宇电解铝厂周围土壤样品,分析了16种多环芳烃(PAHs)的含量和组成,研究了距化工区不同距离的土壤中PAHs含量和组成的变化、来源及健康风险.结果表明,岚山化工园区周围土壤中PAHs总含量(∑_(16)PAHs)(2764.2—3435.9μg·kg~(-1))略高于华宇电解铝厂周边土壤中∑_(16)PAHs(2729.7—3047.5μg·kg~(-1)),均达到重度污染.两化工厂周边土壤中各环数PAHs所占比例大小顺序均为4环5环3环2环和6环,但各PAHs化合物的组成存在差异.距化工区越远,土壤中∑_(16)PAHs含量越低,但各环数PAHs含量变化不一致.同分异构体比值法结果表明,两化工厂PAHs主要来源是燃煤和石油燃烧.正定矩阵因子分解法表明,岚山化工园区周围土壤PAHs的来源中燃煤源占36%,汽油和柴油燃烧源占21.6%,生物质燃烧源占19.1%,石油源和焦炭燃烧混合源占19.3%.华宇电解铝厂周围土壤PAHs的来源中燃煤源占33.5%,汽油燃烧源占24.8%,柴油燃烧源占31.4%,生物质燃烧源占10.3%.岚山化工园区周围土壤PAHs来源中燃煤源所占比例高于华宇电解铝厂,汽油和柴油燃烧源所占比例低于华宇电解铝厂.岚山化工园区和华宇电解铝厂周边土壤中PAHs的总Ba P_(eq)平均值分别为326.7μg·kg~(-1)和441.1μg·kg~(-1),均低于加拿大土壤质量指导值600μg·kg~(-1).健康风险评估表明,华宇电解铝厂总ILCRs值(3.9×10~(-6)—6.0×10~(-6))高于岚山化工园区(2.9×10~(-6)—4.5×10~(-6)).两化工厂周围土壤总ILCRs值大于1×10~(-6),均存在潜在的致癌风险.  相似文献   

6.
利用气相色谱-质谱联用仪(GC-MS)对广西清水泉地下河水16种多环芳烃(PAHs)的含量进行了测定,研究地下河水中PAHs的组成、分布规律及主要来源,为城市近郊型地下河系统持久性污染物防治提供科学依据.结果表明,地下河水中∑PAHs浓度范围为162.13—224.99 ng·L-1,平均值为191.71 ng·L-1,PAHs以4环为主,占47.14%;地下河水中PAHs的含量自上游至下游逐渐增大,2—3环PAHs的百分比先升高后降低;PAHs来源解析表明,上游地区PAHs来源以草、木、煤燃烧源为主,中下游地区敢怀村附近PAHs来源为石油源,地下河出口处PAHs来源以石油源和燃烧源的混合源为主.  相似文献   

7.
利用GC-MS对2008年5月至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析.结果表明,不同采样点PM10浓度均偏高,超标率为14%—238%;PM10浓度水平为谢家集田十五小大通三小淮化集团理工校园.研究区内16种PAHs浓度总量的范围在15.20ng.m-3—111.58ng.m-3之间,平均浓度为64.36ng.m-3,4环以上的稠环芳烃占总浓度的86%.PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季春季夏季.运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小.  相似文献   

8.
对杭埠-丰乐河12个采样点的表层沉积物中16种优控多环芳烃(PAHs)的含量进行了测定.结果表明:16种PAHs均被普遍检出,总含量(∑PAHs)范围为71.3±15—3372±402 ng·g~(-1)干重(dw),平均值为938 ng·g~(-1)(dw),与国内主要河流相比其浓度处于中等水平.底泥中多环芳烃组成以4环和5环为主,共占∑PAHs的81%,其中,二苯并[a.h]蒽(DBA)浓度最高,平均浓度为254 ng·g~(-1).底泥总有机碳(TOC)与∑PAHs之间有良好线性关系.利用特征比值法和主成分分析探讨了PAHs的可能来源,结果显示,杭埠-丰乐河底泥中PAHs主要来自于流域周边居民生物质、煤燃烧及汽车燃油污染.利用沉积物质量基准法和苯并[a]芘毒性当量(TEQBa P)法分别评价了杭埠-丰乐河沉积物PAHs的生态风险和致癌风险,发现部分采样点某些多环芳烃含量超过了效应区间低值(ERL),具有潜在的生态风险;沉积物中TEQBa P均值高达343 ng·g~(-1),具有相当高的致癌风险.  相似文献   

9.
锦州湾表层沉积物中多环芳烃测定与生态风险评价   总被引:2,自引:0,他引:2  
徐绍箐  马启敏  李泽利  程海鸥 《环境化学》2011,30(11):1900-1905
通过测定锦州湾表层沉积物样品中16种美国EPA优控多环芳烃(PAHs)的污染水平,分析其组成、空间分布特征及来源,并进行了生态风险评价.结果表明,锦州湾表层沉积物中PAHs总量分布范围为133.44—593.91 ng.g-1,近岸地区浓度较高,外海海区浓度逐渐降低.就其组成特征而言,以4—6环PAHs为主,占总量的5...  相似文献   

10.
太湖部分沉积物中多环芳烃生态风险评估   总被引:5,自引:0,他引:5  
李玉斌  刘征涛  冯流  周俊丽 《环境化学》2011,30(10):1769-1774
对2009年12月采集的部分太湖表层沉积物中多环芳烃类化合物(PAHs)的现状进行调查和研究,结果表明,太湖流域表层沉积物中共检出属于美国优先控制16种PAHs中的9种,各采样点位PAHs浓度范围在264.9—1703.2 ng·g-1之间.分析显示,表层沉积物中以4环及4环以上PAHs为主,两者之和约占PAHs总量的...  相似文献   

11.
2012年8月于云南省采集了16个树皮样品,分析了其中多环芳烃和有机氯农药(包括六六六和滴滴涕)的浓度水平和分布特征.树皮中∑_(16)PAH的浓度范围为317—1194 ng·g~(-1),平均值为639 ng·g~~(-1);研究区域树皮中∑_4HCH和∑_6DDT的浓度分别为为0.10—3.86 ng·g~(-1)干重(平均值为1.10 ng·g~(-1)干重)和0.78—7.29 ng·g~(-1)干重(平均值为3.32 ng·g~(-1)干重),PAHs浓度是藏东南林芝地区的2—3倍,而有机氯农药的浓度低于藏东南林芝地区.树皮中脂肪可影响研究区域持久性有机污染物(Persistent organic pollutants,POPs)的分布,但影响不显著.同时HCHs、DDTs和2环及3环PAHs的浓度随海拔的升高而增加,呈典型的高山冷捕获效应;4环、5环和6环PAHs的浓度随着海拔的升高而降低,这可能是云南本地污染源影响所致.较低质量的PAHs(2—3环)是研究区域PAHs的重要组成部分,平均占总浓度的77%以上,说明研究区域受到污染物大气远距离传输的重要影响.PAHs特征单体比值表明,草、木材等生物质和煤炭燃料等的低温燃烧是研究区域PAHs的主要来源,同时较低的α/γ-HCH和较高的o,p'-DDT/p,p'-DDT比率表明,林丹和三氯杀螨醇的使用对研究区域树皮中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型及PAHs和OCPs的浓度分布,推断研究区域的OCPs主要受印度季风和西风环流的影响,而PAHs是大气远距离传输源和云南本地污染源共同作用的结果.  相似文献   

12.
张啸  崔阳  张桂香  何秋生  王新明 《环境化学》2014,(12):2144-2151
对太原市2012年3—10月雨水中16种溶解态多环芳烃(PAHs)的分布特征、沉降通量和来源进行了分析.结果表明,16种PAHs总的(∑16-PAHs)平均浓度为1081.2 ng·L-1(范围为316.8—6272.3 ng·L-1),以2—3环PAHs为主,占75.4%,4环和5—6环PAHs分别占18.2%和6.4%.∑16-PAHs浓度与温度(P<0.05)和电导率(P<0.01)呈显著正相关.同一场降雨不同阶段的∑16-PAHs浓度及其组成与降雨量有关.∑16-PAHs的全年平均沉降通量为481.5 ng·m-2·d-1,9月的沉降通量最高(2342.8 ng·m-2·d-1),其次是7月(1604.4 ng·m-2·d-1),10月的最低(83.3 ng·m-2·d-1),其中2—3环PAHs的沉降通量明显高于4环和5—6环PAHs,∑16-PAHs的月沉降通量与月平均降雨量(P<0.01)和降雨频次(P<0.05)呈显著正相关.利用特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的石油燃烧源和少部分的石油源.  相似文献   

13.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

14.
利用GC-MS测定了新乡市地表水中15种多环芳烃(PAHs)的含量,分析了其组成特征,并通过安全阈值(MOS10)法评价了新乡市地表水中PAHs的生态风险.结果表明,新乡市地表水中PAHs的含量为369—4248 ng·L,与国内其他河流相比,污染水平较高.PAHs的组成以3环和4环为主,分别占总量的41.3%和40.3%.新乡市地表水中单种PAHs对水生生物的生态风险大小依次为蒽(Ant)菲(Phe)芘(Pyr)苯并[a]芘(Ba P)荧蒽(Flua)芴(Flu)苊(Ace),其中Ant和Phe的暴露浓度超过影响10%水生生物的概率分别为30.2%和10.4%,具有潜在生态风险;Ace、Flu、Flua、Pyr和Ba P的暴露浓度超过影响10%的水生生物的概率分别为0.85%、1.96%、4.26%、6.71%和5.69%,生态风险较低.联合生态风险评价结果表明,新乡市地表水中∑PAH7等效浓度超过影响10%水生生物的概率为43.7%,大于任何单种PAHs对水生生物的生态风险,主要河流的生态风险从大到小依次为金堤河(56.6%)共产主义渠(43.0%)天然文岩渠(16.4%).  相似文献   

15.
为研究辽东湾表层沉积物中多环芳烃(PAHs)的来源特征,2014年5月采集了20个辽东湾海域表层沉积物样品,并利用气相色谱质谱联用仪对优先控制的16种PAHs进行测定,采用聚类分析、主成分分析-多元线性回归分析、异构体比值3种统计方法对辽东湾表层沉积物中PAHs来源特征进行了研究。结果表明,辽东湾表层沉积物中PAHs含量范围88.5~199.3 ng·g-1,平均值为(126.3±35.3)ng·g-1,其中,萘、菲和荧蒽是PAHs优势组分。通过统计分析结果表明,辽东湾北部表层沉积物中PAHs含量低于西南部,沉积物中PAHs的来源包括石油燃烧来源、煤炭、木材等生物质燃烧来源和石油来源,其中燃烧来源是主要来源,煤炭、木材等生物质燃烧来源占49.9%,石油燃烧来源和石油来源占50.1%。  相似文献   

16.
长江重庆段表层水体中多环芳烃的分布及来源分析   总被引:5,自引:0,他引:5  
采集了长江重庆段干流以及重要支流共7个断面的表层水样,采用液相色谱法分析15种优先控制的多环芳烃(PAHs).结果表明,水体中总PAHs浓度范围为6.44—109.39 ng·L-1,平均值为41.83 ng·L-1.在5个断面水体中检出苯并(a)芘,浓度为0.05—1.32 ng·L-1,低于我国地表水标准限值(2.8 ng·L-1).长江重庆段的PAHs浓度水平低于大部分国内其他河流,与国外一些河流的浓度水平相当.PAHs组成以中低环PAHs(3环和4环)为主,平均比例分别为55.7%和38.8%,高环PAHs(5环和6环)含量较低,分别占3.6%和1.9%.示踪PAHs比值法结果显示长江重庆段表层水体PAHs主要来源于石化产品的泄漏污染.  相似文献   

17.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

18.
珠江水体表层沉积物中PAHs的含量与来源研究   总被引:3,自引:0,他引:3  
杜娟  吴宏海  袁敏  管玉峰 《生态环境》2010,19(4):766-770
沿珠江白鹅潭水域及大学城官州河流域设立6个采样点,利用沉积物捕获器收集沉积物。参照美国EPA8000系列方法及质量保证和质量控制,对各采样点表层沉积物中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)进行分析,以阐明珠江广州河段表层沉积物中PAHs的含量和分布特征,并结合特征化合物指数对其来源作初步探讨。珠江广州河段表层沉积物中PAHs总量介于4 787.5~8 665 ng·g^-1,平均值为7 078 ng·g^-1,黄沙码头河涌出口沉积物中总量为最高(8 665 ng·g^-1),芳村码头为最低(4 787.5 ng·g^-1)。16种多环芳烃中菲、荧蒽、芘含量较高,分别占PAHs总量的16.11%、14.47%和17.77%。特征化合物荧蒽/202比值均小于0.5,茚并[1,2,3-cd]芘/276比值均大于0.2,表明珠江广州段表层沉积物中PAHs主要来源于化石燃料的不完全燃烧。  相似文献   

19.
雨水径流对景观水体中多环芳烃污染特征的影响   总被引:1,自引:0,他引:1  
王建龙  刘强  冯伟 《环境化学》2012,31(9):1393-1398
以北京市长河湾流域某排污口附近景观水体为研究对象,通过对水体中PAHs的连续检测,研究了雨水径流对景观水体中PAHs污染特征的影响,以期为景观水体中PAHs的控制和管理提供科学依据.结果表明,长河湾景观水体中∑16PAHs在降雨时的浓度变化与降雨强度及降雨量有关,长河湾水体中溶解态PAHs组分以3环和4环为主,2环组分所占的比例最少.水体底部沉积物中PAHs含量明显高于岸边,沉积物中∑16PAHs含量约为229.2μg.kg-1,岸边土壤中∑16PAHs含量约为185.6μg.kg-1,低于国内外一些水域沉积物中PAHs污染浓度.  相似文献   

20.
武汉秋冬季大气PM2.5中多环芳烃的分布特征及来源   总被引:1,自引:0,他引:1  
采集了2011—2012年武汉市工业区、交通区和植物园的3个功能区的秋冬2季大气PM2.5样品,采用超声提取预处理和GC/MS分析检测了PM2.5中27种PAHs,探讨了其时空分布特征,然后运用主成分分析/多元线性回归法解析了PAHs的来源.结果表明:PAHs的质量浓度范围为24.705~112.490 ng·m-3,PAHs的质量浓度分布呈现出工业区>交通区>植物园的规律;冬季PAHs质量浓度高于秋季等特征.不同环数PAHs质量浓度呈现出规律变化为:5环>4环>2-3环>6-7环,4环、5环的 PAH 含量比例高表明机动车尾气和煤燃烧排放是主要排放源.不同功能区化合物的比值指示来源略有不同,但总体指明了武汉主要污染源来自燃煤和机动车尾气的排放.源解析结果显示,工业区的污染源主要来自于燃煤,其贡献率为55%,其次为汽油燃烧、柴油燃烧、焦炉和轻质油燃烧.在交通区中,车辆尾气排放(34%)和天然气燃烧(25%)的贡献较大,其次是烹饪、燃煤及木材燃烧.植物园对照区的主要污染源分别是木材燃烧、燃煤、天然气燃烧、车辆排放和烹饪,其中木材燃烧(46%)的贡献最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号