首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
污泥负荷直接影响微生物的生长模式,当污泥负荷发生变化时,短时间内微生物群落结构将发生明显变化。为了研究污泥负荷冲击对SBR系统内活性污泥微生物群落结构的影响,应用聚合酶链式反应-变性梯度凝胶电泳(PCRDGGE)技术,对不同污泥负荷冲击时,SBR处理游泳馆污水中的活性污泥微生物进行了考查。研究表明,在不同污泥负荷冲击的条件下,以MBR污泥为接种污泥,SBR工艺处理游泳馆污水系统内活性污泥微生物群落结构变化明显,多样性指数随着污泥负荷升高而逐渐增加并趋于稳定,但污泥冲击负荷过高多样性指数反而下降,SBR系统内微生物菌种大部分为未经培养菌种,肠杆菌属、甲苯单胞菌属以及γ-变形菌纲细菌等。微生物通过对不同负荷阶段环境条件的适应及演变,逐渐形成了适应相应污泥负荷的微生物种群。  相似文献   

2.
以上海老港垃圾填埋场配套污水处理设施中的污泥为菌种源,在序批式活性污泥反应器(SBR)中对晚期垃圾渗滤液进行短程硝化处理,调节SBR中溶解氧浓度,考察溶解氧对渗滤液短程硝化的影响,分析不同溶解氧条件下污泥微生物群落结构的变化.结果表明,低溶解氧(0.2~0.5 mg/L)条件下,SBR可以获得较高的短程硝化效率,反应17h后,SBR内亚硝态氮/氨氮(质量比)为1.05,氨氮负荷可达到1.5 kg/(kg·d)(以每千克污泥悬浮固体每天承担的氨氮计),出水可以满足后续厌氧氨氧化处理的要求.从污泥变形梯度凝胶电泳(DGGE)图谱中可以看出,SBR微生物群落结构中主要优势种有uncultured Bacteroidetes bacterium、uncultured bacterium、uncultured Candidatus Amoebophilus sp.等.随着溶解氧含量的升高,SBR内微生物群落结构的多样性有所升高,但溶解氧对微生物群落结构影响有限.  相似文献   

3.
稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化,探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1mg·L~(-1),有利于NOB选择性抑制,提高氨氮去除率,出水NO_2~--N/NH_4~+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45kg·(m~3·d)~(-1),AOB受显著抑制,出水NO_2~--N/NH_4~+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。  相似文献   

4.
为了研究污泥负荷对SBR系统内活性污泥微生物中氨氧化菌群落结构的影响,应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,对不同污泥负荷条件下SBR处理经投加葡萄糖调节的游泳馆污水的活性污泥中氨氧化菌进行了分析。研究结果表明,氨氧化菌的群落结构在不同污泥负荷条件下变化明显,在有机碳源较低的情况下生长旺盛,随着污泥负荷的提高其DGGE图谱条带数量逐渐减少,亮度逐渐减弱;在高污泥负荷环境下,氨氧化菌受到严重抑制,多样性指数大幅下降,并从系统中消失。SBR系统内氨氧化菌大部分为不可培养的变形菌,最常见的氨氧化菌是β变形菌中的亚硝化螺菌和亚硝化单细胞菌。  相似文献   

5.
好氧颗粒污泥处理高浓度氨氮废水的研究   总被引:6,自引:0,他引:6  
在不同接种源污泥颗粒化过程中污泥理化性状对比研究的基础上,采用成熟好氧颗粒污泥处理高浓度氨氮废水,对其脱氮行为以及不同C/N条件下好氧颗粒污泥微生物的比耗氧速率、好氧颗粒污泥对氨氮的比降解速率随时间的变化等进行了研究.实验结果表明,在进水氨氮质量浓度较高(480 mg/L)、温度30℃左右的条件下,稳定运行15 d,氨氮的去除率维持在85%左右;进水氨氮的浓度越高,随着微生物对环境的逐渐适应,硝化菌的活性也逐步增加;随着进水氨氮浓度的提高,好氧颗粒污泥对氨氮的比降解速率也逐渐上升.  相似文献   

6.
随着纳米材料的广泛应用,越来越多的纳米材料随着废水进入污水处理厂,纳米材料对污水生物处理系统的潜在影响越来越受到重视。探讨了氧化锰八面体分子筛(manganese oxide octahedral molecular sieve, OMS-2)纳米颗粒对序批式反应器(sequencing batch reactor,SBR)中活性污泥微生物群落结构的影响;以活性艳红X-3B溶液模拟印染废水,将不同浓度的OMS-2混入稳定运行的SBR中,采用Illumina MiSeq高通量测序分析技术,对不同SBR中微生物分布规律进行了研究。结果表明:SBR添加0.25 g·L~(-1)的OMS-2后,其COD去除率和脱色率分别提升了6%和13.6%;Illumina MiSeq高通量测序显示,在混入0.25 g·L~(-1)的OMS-2后,SBR内污泥菌群中拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)的微生物DNA序列操作分类单元(operational taxonomic units,OTU)分别增加了16.8%和96.4%,这2类菌种可能提升了SBR降解有机污染物的能力;不同浓度的OMS-2改变了菌群的多样性和结构,低浓度的OMS-2可以提升微生物菌群的多样性和改变菌群的结构。X射线光电子能谱(XPS)分析表明,OMS-2在SBR中存在锰(Ⅳ)/锰(Ⅲ)转变为锰(Ⅱ)的氧化还原反应,该过程可能影响了菌群的组成。研究为纳米材料的实际应用和环境风险提供了参考。  相似文献   

7.
污泥好氧颗粒化过程中微生物群落结构的演变与分析   总被引:2,自引:1,他引:1  
为了揭示颗粒污泥形成过程中微生物群落结构多样性的演变过程,以人工配水为进水,在SBR中采用厌氧/好氧循环的手段成功培育出具有聚磷特性的颗粒污泥,利用基于16S rDNA的PCR-DGGE技术获得了微生物群落的DNA特征指纹图谱,对条带进行了统计分析和切胶测序,并建立了系统发育树。结果表明,污泥沉降性能的改善要先于颗粒污...  相似文献   

8.
采用缺氧/两级好氧MBBR处理垃圾焚烧渗沥液厌氧出水,研究高浓度氨氮对处理工艺脱氮效果的影响,采用变性梯度凝胶电泳技术分析各个处理单元在不同氨氮浓度下填料中微生物群落结构的变化。实验结果表明,在HRT=30 h和硝化液回流比300%条件下,当进水氨氮浓度达到700 mg·L-1,氨氮的转化率和总氮的去除率分别从99%和80%下降到50%,高浓度氨氮对硝化细菌产生了毒性作用;当进水氨氮浓度降低至500 mg·L-1,氨氮的转化率和总氮的去除率分别恢复到90%和70%,氨氮对硝化细菌的毒性作用是可逆的。反硝化细菌较硝化细菌对高浓度氨氮有较强的耐受能力。微生物群落结构没有发生明显变化,氨氮对微生物的毒性表现在对其生物活性的抑制。  相似文献   

9.
铬离子对SBR工艺活性污泥毒性作用研究   总被引:3,自引:0,他引:3  
针对重金属铬离子对SBR工艺系统中活性污泥的毒性作用,通过检测不同初始污泥容积指数(SVI)下SBR工艺活性污泥在不同铬负荷下的COD值、挥发性污泥浓度以及受铬离子影响的污泥容积指数(SVI),研究重金属铬离子对活性污泥的毒性作用以及对SBR工艺系统处理污水的影响。研究表明,重金属铬离子会导致SBR工艺系统出水COD升高;将铬离子对活性污泥的毒性作用按照挥发性污泥(MLVSS)铬负荷可划分为耐受范围、非耐受范围、细胞失活范围以及细胞分解范围。耐受范围铬负荷低于约30 mg Cr3+/gMLVSS,此范围内铬离子对于活性污泥的毒性作用不大,不致于导致系统出水水质变差;非耐受范围铬负荷在约30~65 mg Cr3+/g MLVSS,在铬离子作用下系统出水COD值明显高于对照系统;细胞失活范围铬负荷在约70~100 mg Cr3+/gMLVSS范围内,SVI大幅下降,微生物部份死亡和失活,出水COD尽管有一些下降,但与进水COD相比差不了多少;细胞分解范围铬负荷在约100 mg Cr3+/gMLVSS以上,微生物大量死亡,部分死亡细胞分解,系统出水COD值因微生物的死亡分解而超出进水COD值,受铬离子影响的系统SVI值大幅度降低。  相似文献   

10.
以合成废水为研究对象,考察了不同进水氨氮浓度(20,40和60 mg/L)条件下好氧/缺氧/延长闲置SBR的脱氮除磷效果,并通过分析典型周期内氮磷元素及微生物体内各储能物质的变化,探究了进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响机理。结果表明,进水氨氮浓度为20,40和60 mg/L时,系统总磷(TP)去除率分别为96.6%、90.1%和81.8%,总氮去除率分别为93.1%、74.9%和60.0%。研究表明,进水氨氮浓度可影响好氧释磷与吸磷、聚羟基脂肪酸酯(PHAs)合成、缺氧反硝化以及闲置段释磷。进水氨氮浓度越高,用于微生物生长的碳源越多,PHAs的合成量越少,则好氧段吸磷减少;较高的进水氨氮浓度使缺氧段反硝化不彻底,较多的硝态氮将抑制下一周期好氧段释磷,系统脱氮除磷性能减弱。  相似文献   

11.
用SBR法处理豆制品废水的试验表明,该系统具有较好的抗负荷冲击能力,进水COD在300~2000 mg/L之间变化,对系统不造成任何影响;考察了曝气时间、曝气量和污泥浓度等对去除效果的影响,试验结果表明,曝气时间和曝气量对处理效果影响很大,确定该反应系统最佳曝气时间是8 h,适宜的曝气量是800 L/h,而污泥浓度控制在4000 mg/L左右时,处理效率最高,采用进水顶出水的排水方式是可行的,确定系统的最佳排水比是3/5.厌氧段的插入可以减少剩余污泥的产量.  相似文献   

12.
在SBR中利用光合细菌球形红细菌污泥颗粒进行模拟氯苯废水处理的初步研究,结果表明,采用球形红细菌污泥颗粒处理模拟氯苯废水的SBR系统是可行的,其降解氯苯过程符合Monod一级反应动力学方程。当进水氯苯浓度在125~187.5 mg/L变化时,处理效率都能稳定在90.5%~95.6%之间;其最佳工艺条件为反应时间6 h、DO 4.75~5.0 mg/L、沉淀时间1.5 h、污泥颗粒浓度4 000~6 000 mg/L。在污泥颗粒浓度4 000 mg/L、DO 5.0 mg/L、反应时间6 h的最佳条件下,当进水COD为748.1 mg/L、氯苯浓度100 mg/L时,COD的去除率达90.9%,处理后出水COD满足国家一级排放标准要求。  相似文献   

13.
SBR法处理豆制品废水工艺条件的研究   总被引:7,自引:0,他引:7  
用SBR法处理豆制品废水的试验表明,该系统具有较好的抗负荷冲击能力,进水COD在300—2000mg/L之间变化,对系统不造成任何影响;考察了曝气时间、曝气量和污泥浓度等对去除效果的影响,试验结果表明,曝气时间和曝气量对处理效果影响很大。确定该反应系统最佳曝气时间是8h,适宜的曝气量是800L/h,而污泥浓度控制在4000mg/L左右时,处理效率最高,采用进水顶出水的排水方式是可行的,确定系统的最佳排水比是3/5。厌氧段的插入可以减少剩余污泥的产量。  相似文献   

14.
在SBR中利用光合细菌球形红细菌污泥颗粒进行模拟氯苯废水处理的初步研究,结果表明,采用球形红细菌污泥颗粒处理模拟氯苯废水的SBR系统是可行的,其降解氯苯过程符合Monod一级反应动力学方程。当进水氯苯浓度在125~187.5 mg/L变化时,处理效率都能稳定在90.5%~95.6%之间;其最佳工艺条件为反应时间6 h、DO 4.75~5.0 mg/L、沉淀时间1.5 h、污泥颗粒浓度4 000~6 000 mg/L。在污泥颗粒浓度4 000 mg/L、DO 5.0 mg/L、反应时间6 h的最佳条件下,当进水COD为748.1 mg/L、氯苯浓度100 mg/L时,COD的去除率达90.9%,处理后出水COD满足国家一级排放标准要求。  相似文献   

15.
采用PCR-DGGE技术直接从水解酸化和缺氧反应器中的污泥样品提取DNA,测定部分菌种的16S rDNA V3区片段序列,通过NCBI基因库比对,初步确定不同生物反应器内优势菌种,并进行了多样性指数分析.结果表明,水解酸化反应器中的生物膜与缺氧反应器中悬浮污泥微生物种群结构存在较大的差异,显示了在不同环境条件下,微生物群落结构的连续动态变化过程.  相似文献   

16.
宋勇  施周  陈世洋  罗璐 《环境工程学报》2013,7(7):2711-2715
利用水解溶菌酶对SBR系统中的剩余污泥进行减量。通过与未加水解溶菌酶的相同系统对比,研究了水解溶菌酶作用下的SBR系统中剩余污泥的减量效果与微生物群落结构的变化。结果表明,在50 d的运行期内,水解溶菌酶作用下的SBR系统中剩余污泥减量总计达到76.3%,同时该系统对COD与TN的平均去除率分别为88.2%与53.8%。通过PCR-DGGE分析可知,随着运行时间的增加两系统微生物群落结构的差异逐步明显,SBR系统中原有的部分优势微生物在水解溶菌酶的作用下逐渐减弱。另外,对微生物群落的部分优势细菌进行克隆测序和系统发育树分析,通过鉴定获得的7条细菌的16S rDNA序列,它们分别与放线菌和杆菌同源性在97%以上。  相似文献   

17.
活性污泥对甲醛废水的净化性能   总被引:4,自引:1,他引:3  
采用微生物法处理低浓度甲醛废水达标排放是比较经济的方法之一.在研究中采用序批式活性污泥法(SBR)工艺,考察了曝气时间、进水甲醛浓度、进水 pH 和水温对微生物净化低浓度甲醛废水的影响.结果表明,随着曝气时间的延长,活性污泥对甲醛的去除率增大.进水甲醛浓度在 40~120 mg/L 范围内,随着浓度升高甲醛污泥负荷增加,微生物对甲醛的降解速率增加,但对甲醛的去除率降低.活性污泥在 pH 为 5~7 的中性和弱酸性环境中对甲醛的降解速率较高.在15~35℃范围内,污泥对废水中甲醛的去除率随温度升高而上升,微生物对甲醛的降解速率随温度升高呈指数递增趋势.  相似文献   

18.
应用序批式反应器(SBR)处理垃圾渗滤液,以絮状活性污泥为接种污泥,经过37 d的运行,反应器内出现小粒径颗粒污泥。第50 d,反应器中污泥完全颗粒化。稳定运行期间,反应器内污泥的平均粒径为0.7 mm;SVI5min一直维持在较低的水平(27~47 mL/g);MLSS基本稳定在3 700~4 500 mg/L;当COD和氨氮的平均进水浓度为2 150 mg/L和312 mg/L时,平均出水浓度分别为540 mg/L和35 mg/L,去除率分别为75%和89%。  相似文献   

19.
膜生物反应器中不同阶段微生物群落结构演变的研究   总被引:5,自引:3,他引:2  
陈谊  孙宝盛  黄兴  张斌 《环境工程学报》2009,3(6):1023-1028
为了研究膜生物反应器(membrane bioreactor, 简称MBR)中微生物群落结构的演变情况,对不同阶段运行状况下(包括培养驯化阶段、初期增长阶段、污泥流失阶段和恢复成熟阶段4个阶段)污泥中的微生物进行了考察。从MBR污泥中提取细菌总基因组DNA,进行聚合酶链式反应变性梯度凝胶电泳(PCR-DGGE)图谱的直观分析,以及总细菌的Shannon多样性指数、各污泥样品的相似性分析和聚类分析。研究表明,反应器中的微生物群落比较丰富。不同的阶段状况下,微生物的群落结构变化比较明显,能够比较好地反映MBR的运行状况和系统处理效能的关系,并且发现微生物的群落结构能够随着反应器的运行状况的变化做出调整恢复。  相似文献   

20.
为探讨种泥投加及氮负荷提升方式对厌氧氨氧化(anaerobic ammonia oxidation,anammox)工艺启动中微生物丰度及群落结构的影响,采取先普通活性污泥驯化后再接种anammox种泥的方式启动anammox工艺。结果表明在活性迟滞阶段投加anammox菌种可以快速启动anammox工艺。通过缩短水力停留时间并增加氮负荷的方式可以避免直接提高进水氮浓度导致的基质毒性抑制,有利于达到更高的总氮去除负荷。稳定运行时反应器的氮去除负荷达0.51 kg·(m3·d)-1,anammox菌基因丰度为4.92×109copies·g-1(以VSS计),占细菌总数的2.70%。启动阶段,反应器内微生物多样性逐渐下降,检测到浮霉菌门中4个anammox菌属,以Candidatus Jettenia和Candidatus Kuenenia为主要anammox菌属。在接种污泥处于活性迟滞阶段时,结合提高进水氮浓度、缩短水力停留时间和投加anammox菌种的方式可以快速启动anammox工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号