首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
低C/N比水产养殖废水生物脱氮实验研究   总被引:5,自引:1,他引:4  
随着短程硝化-反硝化理论研究的发展,在低C/N比条件下,实现污水的生物脱氮处理已成为可能。为此,设计了水产养殖用水的三级生物膜短程硝化-反硝化处理工艺,并对该工艺在去除模拟水产养殖废水主要污染物的作用进行了初步研究。研究结果表明,在进水pH值7.5~8.5,温度为28~32℃,溶解氧为0.5~1 mg/L,游离氨浓度为5~10 mg/L的条件下,模拟废水的COD、NH4+-N和TN的平均去除率分别达到94.4%、91.6%和70.1%;并且低C/N比对出水氨氮NH4+-N的去除率影响不大,NO2--N的平均浓度控制在5.2 mg/L以下,低于鱼类的耐受浓度。表明该短程硝化-反硝化工艺设计,可用于低C/N比水产养殖废水主要污染物的生物处理,尤其是可消除NO2--N对水产养殖的潜在威胁,基本达到养鱼回用标准。  相似文献   

2.
采用反硝化生物滤池处理城市污水厂二级出水,研究了反硝化生物滤池脱氮效能及其影响因素,构建了反硝化生物滤池脱氮动力学模型。结果表明,反硝化生物滤池启动7d后出水水质稳定,对NO3--N的去除率达到90%以上,NO2--N积累现象消失;当外加乙酸钠作碳源并使C/N ≥ 4.7时,对NO3--N的去除率达到90%以上,出水NO3--N浓度在1.0 mg/L以下;反硝化生物滤池具有较高的处理负荷,当HRT ≥ 5 min时,对NO3--N的去除率能达到90%以上;在实验水质条件下,滤池反硝化反应遵循一级反应动力学,且反应速率常数与流速成正比。  相似文献   

3.
以焦化废水特征有机污染物苯酚、喹啉、吡啶和吲哚为碳源,研究了不同C/N(COD/NO3--N)比值进水条件下,反硝化过程中NO2--N积累特征及反硝化动力学特征.结果表明,进水C/N比在2.5~17的条件下,均会出现NO2--N积累的现象.当C/N比值为2.5时,NO2--N出现稳定积累.基于完全反硝化且COD去除率最高的进水条件为,进水C/N比为6.随着C/N比值从2.5增至17,达到NO2--N的最大积累量时间从140 min降至60 min,NO2--N的最大积累率从51.7%降至23.1%.相同进水C/N比条件下,在NO2--N积累阶段, NO3--N比还原速率大于NO2--N比还原速率,导致NO2--N积累;在NO2--N还原阶段, NO3--N比还原速率小于NO2--N比还原速率.不同进水C/N比条件下,在NO2--N积累阶段, NO2--N比积累速率基本不变,为0.072 g N/(g VSS·d)左右.不同进水C/N比值条件下,NO2--N积累阶段的表观碳氮比均大于NO2--N还原阶段的表观碳氮比.  相似文献   

4.
接种成熟厌氧反硝化产甲烷颗粒污泥,以焦化废水特征污染物苯酚、喹啉、吡啶和吲哚为碳源,研究了不同C/N下,反硝化产甲烷体系有机物降解特征。结果表明,焦化废水为碳源,可以发生反硝化产甲烷反应;在C/N为3、6时,只发生反硝化反应;在C/N为12、50时,同时发生反硝化产甲烷反应;体系中反硝化反应优先于产甲烷反应进行;NOx--N降解过程出现NO2--N积累,C/N比增加,NO2--N最高积累量降低,产甲烷活性恢复时间缩短;反硝化比耗碳速率大于产甲烷比耗碳速率,同时反硝化产甲烷体系有机物去除效率高于单一厌氧产甲烷体系,反硝化反应有助于保持pH值稳定,降低ORP,从而促进产甲烷菌的繁殖。  相似文献   

5.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2 个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB 作为厌氧反硝化反应器,进水NO3--N 为50 mg·L-1,C/N 比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT 对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO3--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO2--N和NH4+-N浓度分别为4.69 mg·L-1和2.22 mg·L-1;当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO3--N和TN去除率分别为99.0%和91.4%,出水NO2--N和NH4+-N浓度分别为3.08 mg·L-1和0.47 mg·L-1。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

6.
以NO3--N或者NO2--N为电子受体,以葡萄糖为碳源,通过批次实验研究了反硝化过程中在不同C/N条件下,反应器内的脱氮和N2O的释放情况.结果表明:当C/N在1.5、3、6.5、10和20变化的过程中,以NO3--N为电子受体时,反硝化速率由8.81×10-3g·(g·h)-1升至3.25×10-2g·(g·h)-...  相似文献   

7.
稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30 d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化, 探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1 mg?L-1,有利于NOB选择性抑制,提高氨氮去除率,出水NO2--N/NH4+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45 kg?(m3?d)-1,AOB受显著抑制,出水NO2--N/NH4+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。  相似文献   

8.
针对餐厨废水的水质特点,提出低C/N下的短程硝化反硝化餐厨废水处理组合工艺。通过控制微氧区、好氧区DO分别为0.5 mg/L和2.5 mg/L;硝化液,微氧区混合液和污泥回流比分别为200%、100%和100%,可以实现NO2--N累积率达到90%以上,COD、氨氮平均去除率为73.42%和98.57%。较低的C/N使得反硝化效果不佳,对反应器进水补充适量的甲醇作为碳源,在COD/TN约为4的情况下,以NO2--N为主的反硝化可以使反应器对TN的去除率达到94%,出水各项指标符合相关排放标准,实现了餐厨废水高效和经济的生物脱氮。  相似文献   

9.
以去除海水循环水养殖系统中硝酸盐(NO3--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO3--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO3--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO3--N在整个过程中可被高效去除;NO2--N积累最大值随初始NO3--N浓度的增大而增大,且初始NO3--N浓度越高,NO2--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO3--N、NO2--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO3--N积累问题提供了新的思路。  相似文献   

10.
以生物质生物膜反应器(biomass bio-film reactor,BBFR)和复合垂直流人工湿地(integrated vertical-flow constructed wetland,IVCW)构成的组合系统来处理高氮寡碳微污染地表水,考察不同C/N比对组合系统脱氮效果的影响.实验结果表明,2#CW(2#湿地系统)的TN出水均值低于CW1#(1 #湿地系统),出水达到地表水环境质量Ⅳ级标准.C/N比对BBF系统的TN去除率有很大影响,而C/N比对硝酸盐氮去除率的影响并不明显.综合从碳源投加的经济成本因素和系统的反硝化效果来看,最优的C/N比为4.9.C/N=2.8时,1#CW对NO-3-N的去除率最高,为(71.88±15.70)%,并且与C/N> 2.8的几组情况有显著性差异(F3,56=21,p<0.05).在C/N=4.1时,2#CW对NO3--N的去除率为(92.83±11.26)%,与其他C/N比值下NO3-N的去除率差异显著(F3,56=4.34,p<0.05).C/N比的变化对出水剩余TN、NO3--N的影响情况比较一致.1#CW中出水TN和NO3--N浓度都是随着C/N比的增大而逐步增加;而2#CW中出水TN和NO3--N浓度都是随着C/N比的增大先减小,在C/N> 4.1时又有所增加.BBFR系统对COD的去除高于其对TN去除的贡献率.  相似文献   

11.
高硝酸盐地下水离子交换再生液的生物脱硝及循环利用   总被引:1,自引:0,他引:1  
李琪  黄斌  陈欣  史奕 《环境工程学报》2015,9(5):2303-2309
离子交换法净化含硝酸盐地下水时产生大量高硝高盐废水,为避免其危害环境,利用添加了不同载体(TiO2和α-Fe2O3)的耐盐改性颗粒活性污泥,生物反硝化去除含0.5 mol/L氯化钠和0.25 mol/L碳酸氢钠的模拟高硝高盐再生废水中的硝酸盐,生物反应器出水经深度处理过程高效去除水溶性有机物(SOC)、悬浮物及微生物后,循环利用于再生树脂。结果显示,颗粒活性污泥生物反硝化可以处理硝酸盐浓度高达75 mmol/L的再生废盐水,添加α-Fe2O3和添加TiO2的颗粒活性污泥的反硝化能力分别达2.33和0.93 g NO3--N/(L·d);生物反应器出水中添加氯化钙形成碳酸钙絮凝体,去除生物反硝化自身所产碱度的同时,絮凝去除67%的水溶性有机物;絮凝后出水经颗粒活性炭过滤和臭氧消毒后,可至少再利用于再生树脂10次而不影响树脂处理含硝酸盐地下水的性能,实现了离子交换树脂再生所产高硝高盐废水的生物脱硝与循环利用。  相似文献   

12.
研究了投加硝态氮NO3^--N对缺氧反硝化-好氧和缺氧水解-好氧串联系统处理印染PVA退浆废水的效果。结果表明,缺氧反硝化投加硝态氮NO3^--N比缺氧水解-好氧对CODCr的去除率在缺氧池、好氧池中均提高了30%,缺氧反硝化-好氧工艺二沉池出水经生物碳处理后,CODCr,的去除率达90%。C:N:P的比例合适与否是处理印染PVA退浆废水成功的关键。  相似文献   

13.
SBR用于焦化废水生物处理的试验研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2N的积累,NO2N对COD浓度贡献值得关注。  相似文献   

14.
生物沸石滤池处理富营养化水体的挂膜实验   总被引:3,自引:2,他引:1  
采用上向流生物沸石滤池处理富营养化水体,考察了挂膜阶段(前30 d)滤池对浊度、COD和TP等的去除效果,重点研究了系统中各形态氮素(NH4+-N、NO2--N、NO3--N和TN)的变化情况。结果表明,对于富营养化水体,生物沸石滤池对浊度、COD和TP的去除率分别约为80%、30%和24%;出水NH4+-N始终保持在0.5 mg/L以下,去除率在90%以上;NO2--N出现峰值(4.98 mg/L,第9 d),第13 d后即一直低于进水值;实验后期出水NO3--N与进水NH4+-N变化趋势基本一致,表明硝化生物膜已成熟,原位再生可行;生物沸石床内可能存在同步硝化反硝化现象。出水NO2-N浓度低于进水可作为生物沸石挂膜成功的一个标志。  相似文献   

15.
可用有机碳源不足是限制低碳高硝氮废水反硝化脱氮效能的关键因素。采用4种常见花卉(康乃馨、玫瑰、百合、紫罗兰)的废弃秸秆作为有机碳源投加至垂直布设于潜流人工湿地前端的穿孔管中,考察并对比各系统对低碳高硝氮废水的脱硝效能及其氮转化情况。结果表明,投加花卉秸秆显著增强了人工湿地的NO3--N去除效能,其中,康乃馨秸秆强化脱NO3--N效能最佳,实验期间平均去除率为51.8%和每批次去除量873.4 mg;玫瑰秸秆最差,平均去除率为31.1%和每批次去除量535.0 mg。NO3--N去除率均随运行时间的延长而逐渐下降。伴随NO3--N的去除,系统内产生了一定量的NO2--N和NH4+-N,其浓度均与NO3--N去除率呈显著正相关(p<0.05)。此外,花卉秸秆的投加使系统运行初期出水中的有机物含量偏高。以玫瑰秸秆为外加碳源产生的负效应最低。综合考虑碳源投加的正负效应,康乃馨秸秆为本实验条件下的最佳碳源,玫瑰秸秆则应增加投加量以达到更好的应用效果。  相似文献   

16.
碱度指示MBR中同步硝化反硝化的研究   总被引:5,自引:0,他引:5  
在连续的操作环境下,通过改变在膜生物反应器(MBR)中的C/N和曝气量,研究碱度对同步硝化反硝化脱氮效果的指示作用。结果发现,在反硝化完全的情况下,出水碱度(330~440 mg/L)在硝化过程中较高并与出水TN表现出好的线性关系(Alk=3.22[N]+333.08,R2=0.85);在硝化完全的情况下,出水碱度(60~280 mg/L)在反硝化过程中较低并与出水TN也有很好的线性关系(Alk=-4.93[N]+317.86,R2=0.89)。实际消耗的碱度可以作为另一个指示因子(ΔAlkexper),实际消耗的碱度随出水的NH4+-N浓度升高而降低(ΔAlkexper=-3.85[N]+149.11,R2=0.88,出水NO3--N4.5 mg/L);实际消耗的碱度随出水的NO3--N浓度升高而升高(ΔAlkexper=3.68[N]+161.11,R2=0.88,出水NH4+-N5.5 mg/L)。虽然pH的变化有一定的规律,但是对SND脱氮效果指示不灵敏。  相似文献   

17.
研究了厌氧流化床微生物燃料电池(AFB-MFC)除碳脱氮产电性能的影响因素。结果表明:(1)AFB-MFC对NH4+-N的去除不起作用。电压下降主要是由于进水有机基质浓度下降造成。(2)不添加NO3--N时,在满足AFB-MFC脱氮所需的电子供体条件下增加进水COD/TN有利于AFB-MFC产电。(3)3种无机氮共存下,AFB-MFC在进水有机碳与无机氮质量比(C/N)不低于1.37时,对COD、NO2--N和NO3--N具有理想的去除效果。AFB-MFB在一定进水C/N范围内(1.37~2.50),能得到稳定的输出电压及功率密度。(4)固定进水C/N时,AFB-MFC在高碳氮负荷下仍能得到较理想的NO2--N、NO3--N、COD去除效果,AFB-MFC对NH4+-N去除效果不明显;增加碳氮负荷,AFB-MFC输出电压及功率密度没有明显的改变。(5)有机基质浓度不变下,AFB-MFC中充足的电子供体可保证较高的NO3--N、COD去除率。AFB-MFC输出电压及功率密度随着时间延长而先增加至稳定值后下降。  相似文献   

18.
在成功实现生活污水短程生物脱氮的基础上,采用体积为3 L的小试反应器,利用在线DO监测手段控制DO=1.0 mg·L-1,通过投加NaNO2的方式控制系统初始NO2--N=40 mg·L-1,以丙烯基硫脲(ATU)抑制NH4+-N的氧化过程,考察了生物脱氮好氧阶段不同反应过程中N2O的产生量。结果表明,除缺氧反硝化细菌的反硝化过程外,好氧条件下,氨氧化菌(AOB)能够以NH4+-N作为电子供体,NO2--N作为电子受体,进行反硝化脱氮过程,其反硝化产物为N2O。生物脱氮好氧阶段AOB的好氧反硝化和异养菌的缺氧反硝化反应中,N2O的产量分别占分别占进水总氮(NH4+-N+NO2--N)的7.23%和7.80%。好氧阶段NH4+-N和NO2-的氧化过程中,几乎没有N2O的产生。  相似文献   

19.
将上流式颗粒污泥床(USB)用于反硝化和生物膜法用于自养硝化处理蔗糖配水和小区生活污水,反硝化污泥床去除有机物和硝态氮具有节省需好氧去除有机物的能耗的优势,同时好氧生物膜法硝化效率高。试验结果表明,当工艺进水的有机负荷小于2kgCOD/m3·d时,出水COD均小于60mg/L,好氧单元进水有机负荷和氨氮负荷分别小于13kgCOD/m3·d和09kgNH3N/m3·d时,出水氨氮小于5mg/L;COD/NO-3N是影响反硝化的关键因素,处理蔗糖配水时,COD/NO-3N大于5时反硝化脱氮完全,而COD/NO-3N为10时,生活污水作为电子供体仍然脱氮不完全;有机物含量过高导致好氧单元硝化效果降低,HRT是影响好氧单元硝化效率的主要因素,HRT缩短为15h时,氨氮去除率降低了85%左右;同时处理蔗糖配水和生活污水的反硝化菌活性相当。  相似文献   

20.
通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH_4~+-N)与硝氮(NO3--N),考察不同NO3--N/NH_4~+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH_4~+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH_4~+-N浓度为20~40 mg·L~(-1)的条件下,NO3--N/NH_4~+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH_4~+-N比为1.2时,耦合效果最佳,对应的NH_4~+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62±0.44)mg·(g·h)-1(以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号