首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Fe/C微电解耦合H2O2工艺对经复合混凝处理后的某页岩气井钻井废水进行处理,考察了Fe/C质量比、Fe/C投加量、溶液pH值、气水比、H2O2(30%)投加量和反应时间对COD去除率的影响。结果表明,耦合工艺最佳实验条件为Fe/C质量比1:1、Fe/C投加量500 g·L-1、溶液pH值2.5、气水比20:1、H2O2(30%)投加量6 mL·L-1、反应时间120 min。最佳工艺条件下,页岩气钻井废水经处理后,出水COD质量浓度为89.54 mg·L-1,去除率达到81.60%。  相似文献   

2.
本实验采用光-Fenton法处理电镀添加剂生产废水,探讨了反应时间、H2O2投加量、FeSO4·7H2O投加量、pH、草酸投加量和TiO2等因素对COD去除效果的影响。结果表明,光-Fenton法对COD的降解率达到了94.3%。并得出该方法的最佳操作条件:反应时间为60 min,pH=4,H2O2投加量为80 mL/L,FeSO4·7H2O投加量为6 g/L,Fe2+和H2O2的摩尔比为1∶36,草酸的投加量为12 g/L, TiO2投加量为1.0 g/L。  相似文献   

3.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

4.
胡豫娟  胡奇  高大文 《环境工程学报》2016,10(10):5653-5657
采用Fenton氧化法深度处理经生化降解后的纤维素乙醇废水,考察了初始pH值、Fe2+与H2O2的投加比例(物质的量之比)、H2O2投加量与COD的比例(质量之比)以及反应时间对COD和浊度去除的影响,并通过正交实验确定了反应的最佳条件。研究表明:初始pH值、Fe2+/H2O2、H2O2/COD以及反应时间对深度处理效果有不同程度的影响;在初始pH值为3.0、Fe2+/H2O2为2:3、H2O2/COD为2.8、反应时间为3 h的最佳反应条件下,出水COD为45~56 mg·L-1,浊度为2~3 NTU,达到了纤维素乙醇废水的排放标准。  相似文献   

5.
页岩气压裂返排液的有效处理是页岩气开发急需解决的关键环保问题之一。针对新页HF-1井页岩气压裂返排液经预氧化结合湿式氧化(PO-WAO)工艺处理的出水COD不达标、含盐量高等技术难题,采用膜蒸馏处理技术对工艺的出水进行深度处理。通过膜蒸馏单因素和正交实验表明料液温度和冷凝温度对膜蒸馏处理效果影响较大,在料液温度、冷凝液温度、真空度、运行时间分别为80℃、8℃、0.090 MPa和60 min的最佳工艺条件下,膜通量可达1.750 L·(m2·h)-1,出水COD浓度为95.8 mg·L-1,出水水质可满足《污水综合排放标准》(GB 8978-1996)中一级排放的要求。膜蒸馏出水中电导率为63 μS·cm-1,氯化钠的质量浓度为1.168 0 mg·L-1,可有效降低处理后的压裂废液对周围土壤的盐碱化伤害。  相似文献   

6.
包伟  冯晖  徐炎华 《环境工程学报》2012,6(11):3937-3941
以粉煤灰联合微波-Fenton氧化工艺处理活性艳蓝KN-R生产废水,考察了粉煤灰投加量及吸附时间对处理效果的影响,并通过正交实验对微波-Fenton工艺参数进行了优化。实验结果表明,粉煤灰絮凝吸附与微波-Fenton氧化具有协同效应;在粉煤灰投加量为40 g/L,搅拌吸附时间为20 min,滤液pH值为4,Fe2+和H2O2投加量分别为3.6 mmol/L和0.15 mol/L,微波功率为200 W,辐射反应时间为4 min的优化条件下,染料废水的处理效果最好,COD和色度的去除率分别达到90.90%和99.98%。  相似文献   

7.
采用Fenton试剂对火炸药污染土壤淋洗液进行氧化处理,研究了Fe SO4·7H2O投加量、H2O2投加量、初始pH、反应时间及温度对处理效果的影响,采用发光细菌发评价处理前后水样的急性毒性变化。结果表明,Fenton试剂氧化可有效去除火炸药污染土壤淋洗液的COD,当Fe SO4·7H2O投加量为8.0 g/L,H2O2投加量为64 m L/L,初始pH为3,反应时间120 min及反应温度30℃时,污染土壤淋洗液的COD由4 553.9 mg/L降至800.1 mg/L,COD去除率82.4%,COD的降解符合二级动力学模型。经Fenton氧化处理后,水样的急性毒性降低94.7%,B/C由0.007升至0.22,可生化性得到明显改善。  相似文献   

8.
超声-Fenton联用技术深度处理皮革综合废水生化出水   总被引:1,自引:1,他引:1  
针对皮革综合废水生化处理出水中存在COD和色度偏高等问题,提出采用超声-Fenton联用技术对生化后的皮革综合废水进行深度处理。通过单因素实验考察了超声功率、H2O2投加量、Fe2+投加量(即H2O2/Fe2+比)、溶液pH和反应时间对水样中COD和色度去除率的影响;正交实验结果表明,当溶液初始pH值为4.0时,各因素影响显著性的先后顺序为H2O2>超声功率>反应时间>Fe2+;其优化的实验条件为:H2O2为24.0 mL/L、超声功率为85 W、反应时间为45min、Fe2+为2.2 g/L,经超声-Fenton联用技术深度处理后COD的去除率可达85.4%。在最佳实验条件下,对超声-Fenton联用技术深度处理皮革综合废水生化出水的动力学研究发现,水样中的COD降解反应符合表观一级反应动力学,速率常数增强因子可达8.64,表明存在显著的协同效应。  相似文献   

9.
电-Fenton法预处理干法腈纶生产废水   总被引:2,自引:0,他引:2  
以Ti金属网为阴极,Ti基RuO2涂层形稳电极为阳极,采用外加H2O2和Fe2+的方式,研究了电-Fenton氧化预处理干法腈纶生产废水的工艺,考察了H2O2投加量、Fe2+投加量、pH值和电流强度等因素对污染物降解过程的影响,分析了废水可生化性和污染物变化规律。结果表明,电-Fenton法可以有效降解废水中有机污染物,使废水COD迅速降低,在初始pH值为3.0,Fe2+投加量为5.0 mmol/L,H2O2投加量为60.0 mmol/L,电流强度0.2 A的条件下,反应120 min后COD去除率可以达到44.0%以上;反应过程中H2O2的投加方式对电-Fenton法的处理效果具有明显影响,H2O2分6次投加可以使COD去除率由一次性投加时的44.8%提高至54.1%;处理后废水的BOD5/COD由0.29升高至0.68;GC-MS结果表明,经电-Fenton法预处理后,废水中多数芳香族化合物和特征污染物能被有效降解。  相似文献   

10.
针对页岩气开采过程中产生的非常规压裂返排液具有高粘度、高COD及高稳定性的特点,以Fe(NO3)3和Ca(Cl O)2为原料,采用化学湿法中的两步法合成了一种绿色氧化剂K2Fe O4,并对合成出的K2Fe O4进行了定量分析,得到合成的高铁酸钾产率为67.63%,纯度为93.41%。采用X衍射、红外光谱、扫描电镜及X衍射能谱,对合成的K2Fe O4进行了表征。将K2Fe O4作为某气田页岩气压裂返排液的高效破胶剂,并对影响破胶效果的因素进行了分析。确定了K2Fe O4的加量为3 000 mg/L,体系p H为11.0及反应时间为40 min的最优条件,在最优条件下,得到出水的粘度为1.4 m Pa·s,其COD、SS和色度的去除率分别为59.1%、93.3%和88.9%。通过红外光谱和扫描电镜进行了微观观察,对K2Fe O4氧化非常规压裂返排液中主要成分胍胶的过程进行了机理分析。研究还发现,K2Fe O4在还原分解后,具有比单一铁离子更强的混凝效果。因此,K2Fe O4的应用对页岩气压裂返排液的处理有深远的影响。  相似文献   

11.
净化水是经过一定预处理的石化废水,具有很高的回用价值,为此采用生化-Fenton联合工艺对净化水进行了处理,研究了初始pH、反应温度、H2O2与Fe2+的摩尔投加比、投加量和反应时间等因素对废水COD去除率的影响。结果表明,Fenton氧化反应可有效去除生化处理出水中的COD,在H2O2(30%)投加量为6.34 m L/L,H2O2与Fe2+的摩尔投加比为5∶1,pH值为4,温度30℃,反应时间2h条件下,废水COD的去除率可达79.7%。GC-MS分析结果表明,Fenton氧化反应对难降解有机污染物具有较好的去除效果,同时可有效提高废水的可生化性,B/C比最大可提升至0.58,氧化出水经生化处理后的剩余COD可降至77.9 mg/L,达到工业回用水标准。  相似文献   

12.
为探究电絮凝和电化学氧化法处理油田压裂返排液的机理,采用响应面法拟合了反应过程,考察了电化学反应动力学、活性物质以及电极板的形貌和成分的变化。结果表明,电絮凝和电化学氧化法的响应面模型相关性显著,精确度和可信度均在合理范围内,在最优实验条件下其对应的COD去除率分别可达88.2%和100.0%;压裂返排液经电絮凝和电化学氧化处理后去除COD的动力学分别适用于零级和一级动力学模型,反应速率常数分别为4.49 mg·(L·min)−1和0.005 4 min−1;电絮凝和电化学氧化处理压裂返排液起主要作用的活性物质分别是OH·和O2·;电絮凝反应后,阳极和阴极表面分别附有碳酸钙和絮体有机物,电化学氧化反应后,阳极和阴极表面分别覆盖着致密的有机污染物和钙镁碳酸盐。  相似文献   

13.
采用Fenton氧化法对青霉素和土霉素混合废水二级处理出水进行深度处理,通过正交和单因素实验研究了废水初始反应pH值、H2O2投加量、Fe2+/H2O2摩尔比及反应时间等因素对废水处理效果的影响。实验结果表明,Fenton氧化法处理的最佳反应条件为:初始pH值4、H2O2(30%)投加量50 mL/L、Fe2+/H2O2摩尔比1/20和反应时间60 min,处理后出水COD小于120 mg/L,COD去除率在75%以上,急性毒性(HgCl2毒性当量)小于0.07 mg/L,满足《发酵类制药工业水污染物排放标准》(GB21903-2008)表2标准要求。  相似文献   

14.
杨振宁  卫威 《环境工程学报》2016,10(7):3853-3858
对比分析了UV-Fenton法、Fenton法和O3氧化法对垃圾渗滤液反渗透膜浓缩液的处理特性。结果表明:UV-Fenton法最佳反应条件为反应时间120 min,pH为4.0,H2O2和Fe(II)的投加量分别为6 000 mg·L-1和3 000 mg·L-1;Fenton法最佳反应条件为反应时间90 min,pH为4.0,H2O2和Fe(II)的投加量分别为10 000 mg·L-1和4 000 mg·L-1;O3氧化法最佳反应条件为反应时间90 min,pH为8.0,O3投加量为5 g·L-1。在上述反应条件下,UV-Fenton法、Fenton法和O3氧化法对垃圾渗滤液反渗透膜浓缩液的COD去除率分别为72%、60%和68%,对TOC和总氮(TN)均有较好的去除效果,但是对NH4+-N去除不佳。UV-Fenton法和Fenton法对于总磷(TP)的去除优于O3氧化法。  相似文献   

15.
为了探索微波-Fenton反应体系中的反应机理,进行了正交实验、单因素影响实验和微波-Fenton与水热-Fenton的对比实验。通过正交实验,确定了微波-Fenton法处理络合态重金属废水的主要影响因子为Fe2+投加量、初始pH、H2O2投加量及反应温度,COD与Ni去除效率的影响因子的权重次序一致,而Cu去除的权重次序则与前两者不同;单因素优化实验结果表明,微波-Fenton法处理EDTA-Cu-Ni废水在反应时间为9 min时的最优条件为:Fe2+投加量为0.5 mmol/L,H2O2投加量为185 mmol/L,初始pH为2.5,反应温度为80℃;此时COD∶Fe2+∶H2O2为1∶0.06∶15(mg/L),各影响因子对有机物与金属离子的去除影响效应不同;微波水浴对比实验结果表明,在微波-Fenton体系中,微波主要起加热和提高反应速率的作用。  相似文献   

16.
针对垃圾渗滤液成分复杂、污染物浓度高、可生化性差等特点,采用铝铁复合淀粉(CAFS)絮凝-微波/H2O2联用技术对垃圾渗滤液进行处理,考察了初始pH、絮凝剂投加量、微波辐射反应时间和H2O2投加量等因素对处理水质的影响。结果表明,絮凝最佳反应条件为pH 6.0,投加量13 mL/L;微波/H2O2氧化的最佳反应条件为pH 3.0,30% H2O2 25 mL/L,温度70℃,反应时间5 min。在上述最佳条件下,单独CAFS絮凝、单独微波/H2O2和CAFS絮凝-微波/H2O2联用对垃圾渗滤液COD的去除率分别为32.3%、42.4%和85.7%,CAFS絮凝与微波/H2O2联用,可利用CAFS残余的Fe2+与H2O2构成Fenton氧化体系,实现絮凝与微波催化氧化工艺的耦合,两者起到很好的协同作用。  相似文献   

17.
采用酸析-Fenton氧化法对川西某气井采气废水进行降解处理研究,考察了pH、Fenton试剂配比、投加量及反应时间等主要影响因素对采气废水处理效果的影响,并选用气相色谱-质谱仪器(GC-MS)对酸析-Fenton氧化法处理前后水样的成分进行定性分析.结果表明,酸析-Fenton氧化法最佳实验条件:pH为1,H2O2/COD为7,H2O2/Fe2+(摩尔比)为3,反应时间为120 min;在最佳实验条件下COD、SS、油类物质、色度的去除率分别为81%、99%、95%、99%;对比处理前后水样的GC-MS图谱,表明在质谱扫描范围内,处理前后水样中物质成分变化较大,酸析-Fenton氧化技术对采气废水中难降解有机物的去除效果明显.  相似文献   

18.
为降低液相中有机污染负荷,采用烧杯实验和气相色谱-质谱联用技术研究和分析了混凝-吸附法联用预处理页岩气压裂返排液的可行性。结果表明:精制硅藻土(硅藻土J)投加有利于污染物的去除,联用顺序和吸附反应时间可以影响处理效果;先投加硅藻土J 8 mg·L−1,反应30 min后再投加PAC 2 000 mg·L−1,COD和浊度去除率分别达到57%和87%;混凝-吸附联用能去除水中22种有机污染物,大部分烷烃类、醇类、邻苯二甲酸二丁酯和卤代烃得到很好的去除。PAC和硅藻土J联用比传统混凝/吸附可以更高效地降低溶液有机负荷物,可以作为一种页岩气压裂返排液预处理的方法。  相似文献   

19.
李硕  张广山  王鹏 《环境工程学报》2016,10(12):6879-6886
以提高目标物的降解效果和投加药剂利用率、缩短反应时间及节约处理成本为目的,探讨4种不同光助-Fenton氧化工艺对环境内分泌干扰物双酚A(BPA)的降解效果。以BPA的去除率和反应速率作为评价指标,采用紫外分光光度计、TOC测定仪及分子荧光光度计分别对BPA的去除率、反应体系的矿化度和·OH的生成量进行研究。确定了微波-Fenton氧化工艺降解水中BPA的效果最佳,并深入研究pH值、H2O2投加量、n(H2O2)/n(Fe2+)、微波反应功率及时间对微波-Fenton氧化工艺的影响。结果表明:pH=3,n(H2O2)/n(Fe2+)为20,H2O2浓度为2 mmol·L-1,反应时间为5 min,反应功率为300 W的条件下,BPA初始浓度为100 mg·L-1时其去除率最高达99.67%,矿化度达53%;pH值在2~6范围内对BPA均有降解效果,铁泥量也有一定的减少。为微波-Fenton氧化工艺的实际应用奠定了理论基础,并且提供了技术支持。  相似文献   

20.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号