首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法制备了具有较高催化活性的磁性纳米Fe_3O_4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe_3O_4投加量、初始pH、共存阴离子(Cl~-、CO_3~(2-)、NO_3~-)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe_3O_4纳米颗粒;重复性实验结果表明,Fe_3O_4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe_3O_4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L~(-1)、Fe_3O_4投加量为1.2 g·L~(-1)、初始pH=7.0时,Fe_3O_4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe~(2+)主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe_3O_4/PS体系中同时存在SO_4~-·和·OH,SO_4~-·对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。  相似文献   

2.
采用水热合成法制备出了具有较高催化活性的催化剂四氧化三铁(Fe_3O_4),并利用Fe_3O_4活化过硫酸盐降解活性黑5,考察了初始pH、Fe_3O_4投加量、活性黑5初始浓度和过硫酸盐投加量对活性黑5降解效果的影响。结果表明,Fe_3O_4活化过硫酸盐降解活性黑5的最佳条件为初始pH 6、活性黑5初始质量浓度50mg/L、过硫酸盐投加量6mmol/L、Fe_3O_4投加量2.0g/L。在最佳条件下,反应180min,活性黑5的降解率达到80.2%,Fe_3O_4反复使用5次后,活性黑5的降解率仍能达到77%以上。活性黑5的降解途径为:偶氮键打开产生苯环中间产物和萘环中间产物,萘环中间产物逐步转化为邻苯二甲酸酐→邻苯二甲酸→苯甲酸;苯环中间产物逐步转化为对氨基苯磺酸→硝基苯和对氨基苯酚,对氨基苯酚转化为对苯二酚;最终被彻底氧化降解成CO_2、H_2O等无毒小分子物质。活性黑5在降解过程中对植物的毒性先升高后降低。  相似文献   

3.
以微生物絮凝剂MBFX-8、羧甲基壳聚糖CMC和磁性Fe_3O_4为原料,制备了新型MBFX-8/磁性Fe_3O_4@CMC复合絮凝剂。采用FTIR和XRD对新型复合絮凝剂进行表征。结果表明,羧甲基壳聚糖(CMC)已成功接枝在Fe_3O_4纳米粒子表面,而且MBFX-8也顺利掺入复合絮凝剂中。考察了MBFX-8与Fe_3O_4@CMC的质量比、p H、絮凝剂投加量和静置反应时间对Cu~(2+)去除性能的影响。MBFX-8与Fe_3O_4@CMC的质量比为1∶5时,复合絮凝剂对Cu~(2+)的去除率最好。复合絮凝剂对Cu~(2+)的去除效果与溶液初始p H以及静置反应时间正相关,而与其投加量的增加呈先提高后降低的趋势。当溶液初始p H值为6.5,复合絮凝剂投加量为5 g·L-1,静置反应时间为3 h时,得到最优的Cu~(2+)去除效果,达98.9%。  相似文献   

4.
为了探索微波-Fenton反应体系中的反应机理,进行了正交实验、单因素影响实验和微波-Fenton与水热-Fenton的对比实验。通过正交实验,确定了微波-Fenton法处理络合态重金属废水的主要影响因子为Fe2+投加量、初始pH、H2O2投加量及反应温度,COD与Ni去除效率的影响因子的权重次序一致,而Cu去除的权重次序则与前两者不同;单因素优化实验结果表明,微波-Fenton法处理EDTA-Cu-Ni废水在反应时间为9 min时的最优条件为:Fe2+投加量为0.5 mmol/L,H2O2投加量为185 mmol/L,初始pH为2.5,反应温度为80℃;此时COD∶Fe2+∶H2O2为1∶0.06∶15(mg/L),各影响因子对有机物与金属离子的去除影响效应不同;微波水浴对比实验结果表明,在微波-Fenton体系中,微波主要起加热和提高反应速率的作用。  相似文献   

5.
采用浸渍—煅烧法制备CuO/γ-Al_2O_3催化剂,并用其催化双氧水处理聚乙烯醇(PVA)废水,对比了不同煅烧温度下CuO/γ-Al_2O_3的催化性能以及催化剂投加量、双氧水投加量、PVA初始质量分数对PVA去除率的影响。结果表明,煅烧温度为450℃时得到的CuO/γ-Al_2O_3催化性能最好,增加CuO/γ-Al_2O_3和双氧水的投加量均有助于降低PVA降解产物黏均分子量,而PVA初始质量分数越高,PVA降解产物的黏均分子量越高。当PVA初始质量分数为1.0%,双氧水投加量为60 mL/L,CuO/γ-Al_2O_3投加量为1.0g/L,反应温度为60℃,溶液初始pH=3时,反应2h后PVA去除率达90%以上,PVA降解产物的黏均分子量从100 773降至3 194,下降了近97%,CuO/γ-Al_2O_3的催化性能随着重复使用次数的增加有一定下降。  相似文献   

6.
为探讨O_3/H_2O_2体系降解水中青霉素G(PCN)的效能及其降解机理,分别考察了在降解过程中pH、O_3投加量和H_2O_2投加量对PCN和COD去除效果的影响,通过实验数据得出了PCN降解动力学方程;并采用傅里叶红外光谱和液相色谱-质谱联用分析探讨了PCN在O_3氧化过程中的中间产物变化及其降解规律。结果表明:在初始ρ(PCN)为25 mg·L~(-1)、pH=10、O_3投加量为1.48_(g·)L~(-1)、H_2O_2投加量为7.84 mmol·L~(-1)、温度为20℃的条件下,反应10 min后PCN可全部被降解,反应3h后COD的去除率达到71.9%;O_3的反应级数为0.697 3,在降解过程中,O_3初始浓度对反应速率的影响最大;反应活化能为E_a=27.59 kJ·mol~(-1)该反应活化能较低,说明此反应容易发生;经氧化降解后,PCN的抑菌结构被破坏,并且产物中可能含有羧酸类和胺类化合物。以上研究结果对解决水体中PCN污染问题具有参考价值。  相似文献   

7.
采用柠檬酸辅助溶胶-凝胶法制备了纳米CuFe_2O_4,以其为非均相催化剂,开展了纳米CuFe_2O_4/K_2S_2O_8非均相类Fenton体系对橙黄Ⅱ降解性能的研究,考察了纳米CuFe_2O_4焙烧温度对其结构及催化性能的影响,探讨了初始pH、K_2S_2O_8投加量和橙黄Ⅱ初始浓度对该体系降解性能的影响,评价了纳米CuFe_2O_4的稳定性,并在此基础上,探究了纳米CuFe_2O_4/K_2S_2O_8非均相类Fenton体系对橙黄Ⅱ的降解机制。结果表明:(1)纳米CuFe_2O_4最佳焙烧温度为400℃,此焙烧温度下制备的纳米CuFe_2O_4晶型较好、比表面积较大、催化活性和稳定性较高;(2)在纳米CuFe_2O_4/K_2S_2O_8非均相类Fenton体系中,橙黄Ⅱ快速降解最适宜的反应条件为初始pH 5.3、K_2S_2O_8投加量0.5g/L、橙黄Ⅱ初始质量浓度20mg/L、纳米CuFe_2O_4投加量1g/L;(3)纳米CuFe_2O_4在反应中的稳定性较好,金属溶出量较低,可通过有效催化K_2S_2O_8分解为SO_4~-·和HO·,实现橙黄Ⅱ的开环降解。  相似文献   

8.
研究了三氧化二钒(V_2O_3)活化过硫酸钠(SPS)降解2,4,6-三氯酚(TCP)的效果,分别考察了V_2O_3投加量、SPS和TCP浓度对其降解的影响。结果表明,在V_2O_3投加量为0.05 g·L~(-1),SPS浓度为1.0 mmol·L~(-1),TCP初始浓度为5.0mg·L~(-1)时,反应24 h,有72.4%的TCP被降解。提高V_2O_3投加量不利于TCP的降解,而增加SPS浓度能有效增加TCP的降解速率;利用自由基淬灭反应和电子顺磁共振技术(EPR)对反应体系的主导自由基进行了鉴定,发现羟基是体系降解TCP的主要活性物种,推测并初步证实了V_2O_3活化SPS的过程,发现了二氧化钒(VO_2)和五氧化二钒(V_2O_5)也能活化SPS降解TCP。  相似文献   

9.
采用O_3/H_2O_2协同氧化处理石油化工行业反渗透浓水,考察了反应时间、初始pH、H_2O_2投加量和H_2O_2投加方式对O_3/H_2O_2协同氧化反渗透浓水的影响。结果表明,在初始pH为6.49、H_2O_2投加量为80mg/L、分4次平均投加(开始时投加1次,之后每隔10min投加1次)、反应时间为35min的最优化条件下,处理后的反渗透浓水COD、BOD5、总有机碳(TOC)质量浓度分别降低至48.9、10.2、25.70mg/L,均达到《石油化学工业污染物排放标准》(GB 31571—2015)的直接排放标准。COD、UV254、TOC的去除率分别达到83.4%、68.0%、88.3%。  相似文献   

10.
采用铁碳微电解/H_2O_2耦合类Fenton法预处理高浓度焦化废水,通过正交和单因素实验研究了废水初始pH、不同质量的微电解填料、H_2O_2投加量及反应时间对COD处理效果的影响,同时研究了COD降解动力学。结果表明:最佳控制条件是废水初始pH为3、铁碳填料投加量为300 g/L、H_2O_2投加量为80 m L/L、反应时间为160 min,此时COD的去除率达到87%以上;H_2O_2的加入可使铁碳微电解/H_2O_2系统COD的去除率提高37.34%,铁碳微电解/H_2O_2系统COD反应动力学方程为y=0.5296x-0.6218,相关系数R~2为0.9917。  相似文献   

11.
研究了在超声波、Fenton不同体系中邻苯二甲酸二甲酯(DMP)和壬基酚(NP)的降解效果.通过正交实验得到超声波/Fenton工艺各个因素影响程度的大小为:H2O2投加量>初始pH>反应时间>Fe2+投加量>超声功率.最后得到降解250mL质量浓度为100 μg/L的DMP的最佳条件:H2 O2投加量为2 mmol/L、Fe2+投加量为0.40 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到85.96%;降解250mL质量浓度为100 μg/L的NP的最佳条件:H2O2投加量为4mmol/L、Fe2+投加量为0.50 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到78.70%.  相似文献   

12.
蒋绍阶  王洪武 《环境工程学报》2019,13(10):2347-2356
采用常温搅拌法,在聚苯乙烯磺酸钠(PSS)处理过的Fe_3O_4表面诱导生长ZIF-8壳层,成功合成了磁性核壳金属有机骨架Fe_3O_4@ZIF-8,并对其吸附去除偶氮染料刚果红的性能进行了探究,考察了刚果红初始浓度和接触时间、Fe_3O_4@ZIF-8投加量以及pH对刚果红去除的影响。SEM、TEM、XRD、FT-IR及VSM表征结果证明,ZIF-8纳米颗粒已成功负载于Fe_3O_4表面,形成了典型的核壳结构,并且具有优异的磁学性能。吸附实验结果表明,反应最佳pH为6,吸附剂投加量为500 mg·L~(-1);当反应时间达到180 min时,吸附达到平衡。吸附反应的吸附动力学和吸附等温线分析表明,刚果红染料在Fe_3O_4@ZIF-8上的吸附动力学符合二级动力学方程,吸附等温线符合Langmuir模型。Fe_3O_4@ZIF-8吸附剂对刚果红具有高效的选择吸附性能并且在循环吸附中展现出良好的循环吸附性能。因此,磁性核壳金属有机骨架Fe_3O_4@ZIF-8作为吸附剂在去除刚果红染料方面有着广阔的应用前景。  相似文献   

13.
为了解决水体中Pb(Ⅱ)污染问题,利用SiO_2和半胱氨酸(Cys)对Fe_3O_4纳米粒子进行表面修饰,并用于水中Pb(Ⅱ)的去除研究。实验结果表明,Fe_3O_4@SiO_2@Cys的吸附效果明显优于另外两种未修饰Cys的磁性纳米材料(Fe_3O_4和Fe_3O_4@SiO_2)。当Fe_3O_4@SiO_2@Cys投加量为1.0g/L,pH=6.0,Pb(Ⅱ)初始质量浓度为100mg/L,吸附时间为30min时,水中Pb(Ⅱ)去除率可达到95%以上。在Cd(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)共存条件下,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的吸附效果明显优于其他3种金属离子。经5次循环使用后,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的去除率仍保持在80%左右。  相似文献   

14.
用浸渍法在活性炭(AC)上负载氧化铈(CeO2)制备催化刺CeO2/AC催化臭氧氧化去除邻苯二甲酸二甲酯(DMP),考察了臭氧投加量,DMP初始浓度和溶液初始pH的影响.结果表明,CeO2/AC催化臭氧氧化去除DMP的最佳臭氧投加量为50mg/h,DMP初始浓度和溶液初始pH对CeO2/AC催化臭氧氧化DMP过程都有一定的影响.在DMP初始质量浓度为30 mg/L、溶液初始pH为5、臭氧投加量为50 mg/h、反应60 min时,CeO2/AC的加入(1.5g/L)有利于催化臭氧氧化DMP过程中总有机碳(TOC)的去除,TOC去除率由AC催化臭氧氧化的48%提高到68%.而单独臭氧氧化过程中的TOC去除率仅22%;且单独臭氧氧化与AC、CeO2/AC催化臭氧氧化DMP的矿化过程均符合二级反应动力学方程,CeO2/AC催化臭氧氧化DMP时TOC降解的二级反应动力学常数为0.0015L/(mg·min),分别是AC催化臭氧氧化的2.5倍和单独臭氧氧化的7.5倍.  相似文献   

15.
CuO/γ-Al2O3类Fenton试剂是降解丁基黄药的优良试剂。该试剂与传统的Fenton试剂相比,提高了反应的pH值,可在较高pH(4~5)条件下反应,而传统的Fenton试剂的适宜pH值一般在3以下。采用单因素实验和正交实验相结合的方法研究了pH、催化剂投加量、过氧化氢投加量以及反应时间对丁基黄药降解效果的影响,并对催化剂的使用寿命进行了探讨。研究结果表明,反应的最佳条件为:pH为4~5,催化剂投加量为6 g/L,过氧化氢用量为30 mg/L,反应30min。在此反应条件下,丁基黄药的降解率达98%以上;影响丁基黄药降解效果的因素大小顺序为:pH>反应时间>H2O2用量>催化剂投加量,其中pH对CuO/γ-Al2O3类Fenton试剂降解丁基黄药的影响最为显著。  相似文献   

16.
为去除水中Sb(Ⅲ),采用改进的共沉淀法制备抛光污泥掺杂Fe_3O_4吸附剂(HCO/Fe_3O_4),并采用海藻酸钠(SA)固化交联形成HCO/Fe_3O_4复合微球吸附剂(SAB);利用吸附序批实验考察了pH、温度和共存离子对SAB吸附Sb(Ⅲ)效果的影响。结果表明,制备SAB的HCO/Fe_3O_4和SA最佳质量分数分别为2.5%和2.0%。在pH为7,温度为25℃时吸附72h,投加4.0g/L SAB对初始质量浓度为20.0 mg/L的Sb(Ⅲ),去除率达到80%以上。NO_3~-和SO_4~(2-)对SAB吸附Sb(Ⅲ)没有显著影响,而10mmol/L PO_4~(3-)对SAB吸附Sb(Ⅲ)有微弱的促进作用。SAB对Sb(Ⅲ)的吸附符合Langmuir模型和准二级动力学模型,吸附过程结合了化学吸附(离子交换)与物理吸附(扩散反应)作用。  相似文献   

17.
为探究微波强化高级氧化对土壤有机污染物的去除效果,以土壤邻苯二甲酸二丁甲酯(DBP)为处理对象,过碳酸钠(SPC)为氧化剂,通过单因素实验探索微波强化高级氧化降解土壤有机污染物的主要影响因子,比较MW/SPC、水浴/SPC和单独MW 3种反应体系对DBP去除的效果,通过自由基猝灭实验分析体系主要活性物种,研究DBP去除途径及MW在体系中所起的作用。结果表明:微波强化高级氧化降解有机污染物的主要影响因素有SPC投料比、含水率、反应温度和微波辐照时间;在SPC/DBP(摩尔比)为800,含水率为80%,反应温度为80℃的最佳反应条件下处理初始质量浓度为21.7mg·kg~(-1)的DBP 40 min后,DBP的去除率达到85.14%;土壤的初始p H对DBP去除率影响不显著,MW/SPC体系中主要活性物种是HO·;DBP去除途径主要是氧化降解。  相似文献   

18.
针对Co_3O_4/氧化石墨烯(GO)纳米复合催化剂粒径小、不易回收的问题,通过溶液共混法将Co_3O_4/GO与氧化纤维素(TOCNs)复合,制备出粒径约为5mm的新型复合催化剂Co_3O_4/GO/TOCNs。采用X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)等对其进行表征,并催化单过硫酸氢钾(PMS)降解酸性橙Ⅱ。实验结果表明:Co_3O_4/GO/TOCNs的催化性能与Co_3O_4/GO一致且可自沉淀回收,稳定性良好,循环使用过程中Co溶出质量浓度均保持在0.1mg/L以下;当酸性橙Ⅱ初始摩尔浓度为0.2mmol/L,PMS投加量为2.00mmol/L,Co_3O_4/GO/TOCNs投加量为0.50g/L,温度为25℃,pH=7时,酸性橙Ⅱ可在6min内完全降解。  相似文献   

19.
采用等体积浸渍法制备了非均相催化剂LaFe_(0.9)Mn_(0.1)O_3/TiO_2用于紫外催化氧化处理煤气化酚氨回收生化出水,通过X射线衍射(XRD)和扫描电子显微镜(SEM)表征来研究催化剂的结构特性。考察了pH、双氧水投加量、催化剂焙烧温度、催化剂投加量和反应时间对氧化效果的影响,最后探究污泥炭对反应的强化作用。结果表明所制备的催化剂具有标准的钙钛矿晶型,当处于pH=3、双氧水投加量0.20%(体积分数)、催化剂焙烧温度700℃、催化剂投加量3.0g/L、反应时间60 min、污泥炭投加量1.0g/L、紫外辐照强度30 W条件下,COD去除率达到78.9%、总有机碳(TOC)去除率达到73.1%,废水中大量有机污染物被降解,毒性大大降低。污泥炭的投加对紫外催化氧化具有强化作用,而过量投加会抑制催化剂活性。  相似文献   

20.
为解决传统Fenton法在水体通常的酸碱(pH>6.0)条件下活性低的问题,采用水热合成法制备了掺杂Al的非均相铜基类芬顿催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)及比表面与孔隙度分析(BET)等技术对其结构和形貌进行了表征;以20 mg·L−1的环丙沙星(CIP)为目标污染物,研究了不同催化剂的非均相铜基类芬顿反应体系对CIP的降解效果及H2O2消耗量和·OH产生量的影响;探讨了Cu/Al-180催化剂投加量、H2O2投加量、初始pH 3个因素对Cu/Al-180催化剂的非均相类芬顿催化降解性能的影响;考察了催化剂的循环使用活性及稳定性。结果表明:不同温度下合成的Cu/Al催化剂主要组分是以CuO和少量Al2O3组成的介孔材料;Cu/Al-180催化剂具有较好的结晶度及均匀的颗粒状表面形貌,且对CIP具有最高的催化活性;在Cu/Al-180催化剂投加量为3.0 g·L−1、H2O2投加量为149.55 mmol·L−1、pH为5.0条件下,反应时间120 min时CIP降解率为93.3%;Cu/Al-180催化剂催化H2O2的pH范围明显拓展,在弱酸性和中性条件下表现出优良的催化性能;合成的Cu/Al-180催化剂经过5次连续循环使用后对CIP降解率可达64.2%,表明该催化剂具有较高的催化活性,且金属离子溶出量较少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号