共查询到20条相似文献,搜索用时 62 毫秒
1.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征. 相似文献
2.
重庆主城区大气PM10及PM2.5来源解析 总被引:8,自引:0,他引:8
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主. 相似文献
3.
为探讨ME-2模型控制旋转对传统PMF模型源解析效果的提升作用,于2017年9月10日~2018年8月29日在深圳北部某工业区开展PM2.5采样,共获得153套样品.对PM2.5中31种化学组分进行了分析,筛选出17个物种输入模型运算.2018年深圳北部工业区大气PM2.5年均浓度为32.3 μg/m3,利用PMF模型初步识别出9个因子,分别为二次硫酸盐、二次硝酸盐、老化海盐、土壤扬尘、工业排放、燃煤、生物质燃烧、船舶排放和机动车,PMF输出结果中\"混合因子\"问题显著.基于PMF解析结果及获得的先验信息,在ME-2模型中建立4个限制源谱进一步解析,结果表明,与PMF模型相比,ME-2结果的示踪物在源中分配更集中,对示踪物浓度与相应源贡献的时间序列也提供了更好的拟合效果.二次硝酸盐、老化海盐、工业排放源在PMF模型中被高估了9%~51%,而二次硫酸盐、燃煤和生物质燃烧源被低估了19%~40%.本研究中ME-2解析结果比PMF更具有环境和统计学意义,为污染防治提供了更精确的控制指向. 相似文献
4.
为了明确驻马店市区PM2.5污染特征及贡献源类,2019年1—3月在驻马店市区2个采样点采集PM2.5样品,分析了其化学组分特征;结合PMF和后向轨迹模型构建了PM2.5的时间和空间来源解析方法,并对该解析方法进行应用.结果表明:①采暖季,驻马店市区环境空气中ρ(PM2.5)平均值为117 μg/m3,NO3-和OC是其主导组分;ρ(OC)和ρ(EC)分别达18.2和5.2 μg/m3,且ρ(OC)/ρ(EC)平均值为3.5,说明机动车源和燃煤源的影响较明显.②ρ(SO42-)与ρ(NO3-)相关性显著(R=0.80,P < 0.01),表明SO42-和NO3-具有较高的同源性.③重污染过程中ρ(SNA)(SNA为SO42-、NO3-和NH4+三者统称)平均值为61.5 μg/m3,显著高于清洁期;重污染过程中硫氧化率(SOR)和氮氧化率(NOR)分别达0.42和0.39,说明存在明显的二次离子生成过程.④重污染过程中Si、Al、Mg等地壳类元素的浓度和占比均高于清洁期,说明重污染过程中扬尘源的贡献可能较高.⑤来源解析结果表明,二次源是采暖季PM2.5的最大贡献源,贡献率为32.6%,其次为扬尘和生物质燃烧混合源(26.4%)、机动车源(21.4%)、燃煤源(13.2%)和工业源(6.3%);两次重污染过程中的最大贡献源分别为二次源(54.5%)和机动车源(46.2%),清洁期的主要贡献源主要为二次源(45.2%)和燃煤源(29.8%).从空间变化来看,扬尘和生物质燃烧混合源对天方二分厂的贡献率(29.3%)明显高于对彩印厂的贡献率(23.3%),而燃煤源对彩印厂的贡献率(16.5%)高于对天方二分厂的贡献率(10.1%),其他源类的贡献率相差不大.正东、东南以及西北方向是彩印厂和天方二分厂各类源的主要贡献方向.研究显示:二次源是采暖季、重污染期间和清洁期最大的贡献源;相比于清洁期,重污染期间扬尘和生物质燃烧混合源贡献增加.源类贡献存在空间差异,正东、东南及西北方向是采样点各类源主要贡献方向. 相似文献
5.
为精准识别深圳市典型商业、居住与工业混合功能区的PM2.5污染来源,选取深圳市北部地区5个点位于2017年9月~2018年8月全年进行PM2.5的样品采集和组分分析,利用优化的多元线性引擎模型(ME-2)对其主要来源及其时空变化特征进行探索.结果显示,研究区域研究时段的大气PM2.5年均浓度为29.0μg/m3,解析出了SO2二次转化(19.9%)、机动车(15.1%)、生物质燃烧(11.2%)等10种来源,其中SO2二次转化、生物质燃烧、NOx二次转化、VOCs二次转化、工业排放、老化海盐和远洋船舶源具有显著的区域传输特征,而机动车源、燃煤和扬尘具有本地源特征,受到局地排放的影响较大.重污染天气下机动车源、NOx二次转化、工业排放及生物质燃烧源的增加最为显著,加强这些源的控制是此类混合功能区PM2.5污染精细化防治的关键. 相似文献
6.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键. 相似文献
7.
于2017年1月1日—12月31日对南京市城区大气细粒子(PM2.5)化学组分(元素、水溶性离子和碳质组分)的小时质量浓度进行连续观测,采用正矩阵因子分析(Positive Matrix Factorization,PMF)模型分别基于全年观测数据(PMF全年)和逐月观测数据(PMF月份)进行源解析,比较不同观测周期源解析结果的差异以及对PM2.5各组分浓度估算的准确性.结果表明:不同观测周期下,PMF源解析结果中因子类型未发生改变,但因子组成和贡献分布存在较大差异.由于PMF模型假设同一观测周期内源成分谱不发生变化,只有基于逐月观测数据的PMF源解析才能体现全年范围内因子组成和贡献分布的变化.尽管PMF全年和PMF月份的分析结果均能准确估算PM2.5组分的月均浓度,但PMF月份结果对各组分小时浓度的估算值和观测值在时间变化上更一致.这是因为PMF模型要求对各组分浓度的平均值进行拟合,易低估(或高估)PM2.5组分在观测周期内的极大(或极小)值.因此,基于短期(例如,月份)高分辨观测数据的PMF分析... 相似文献
8.
基于西安疫情管控期空气监测数据,分析PM2.5和O3的时空序列特征,从PM2.5源解析、O3前体物VOCs溯源、气象要素和区域传输方向探讨污染成因.结果表明:(1)管控期PM2.5和O3分别同比上升20.39%和23.72%,其他参数均下降;与管控前后时期相比,管控期PM2.5和PM10日均值协同变化趋势减弱,O3和NO2此消彼长趋势增强;相比去年同期,PM2.5小时值升高11~19μg·m-3,O3小时值夜间18:00~23:00升幅增大,为10~19μg·m-3.(2)污染物浓度变化呈现一定的空间聚集协同性;受地形及植被阻滞吸附影响,PM2.5污染集中在北部,由于城郊NO2滴定效果弱于城区,表现为南部郊区O3污染较... 相似文献
9.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧... 相似文献
10.
目前有关中国新疆地区PM2.5化学组分特征及其来源的研究较少,为深入了解新疆典型城市PM2.5的化学组分特征与来源构成,该研究于2016年4个季节代表月份在阜康市5个点位采集PM2.5样品,分析了PM2.5质量浓度及主要化学组分(包括水溶性离子、碳组分和无机元素)。分析结果显示,阜康市PM2.5年均浓度达140.77μg/m3,超标较为严重。各组分浓度由高至低依次是SO42->NH4+>NO3->元素总和>OC>Cl->EC>Na+>K+>F->Ca2+>Mg2+,其中SO42-浓度显著高... 相似文献
11.
金属元素是大气PM2.5的重要组成成分,对人群危害性极强且兼具源特异性,分析不同经济模式地区大气细颗粒物中金属污染状况及来源差异,可以为科学规划城市产业布局和保护大气环境提供参考.通过霾/非霾期大气PM2.5采样,使用电感耦合等离子体发射光谱仪(ICP-OES)测定成都市及仁寿县样品中18种金属元素质量浓度,分析其污染水平,并基于正定矩阵因子分解模型(PMF)解析两地大气PM2.5中金属元素的来源.结果表明,成都市扬尘源、移动源和燃煤源特征元素占元素总和的比值大于仁寿县,而仁寿县生物质燃烧源、工业源以及燃油源特征元素占比则较高.两地Cr、Cd和As元素浓度均超标,表明PM2.5中重金属污染严重.随着霾污染加剧,两地PM2.5中金属元素总量上升,但增幅远低于PM2.5浓度增长.此外,不同元素在霾期和非霾期浓度比值存在差异,成都市变化范围为0.7(Al)~2.8(Ba),仁寿县介于0.8(Al)~3.1(Mn)之间,但总的来说两地大致呈现出燃煤和工业活动排放元... 相似文献
12.
为明确威海市采暖期细颗粒物的组分及来源,于2018年1~3月在威海市3个空气质量例行监测点采集了环境空气PM2.5样品,分析OC、EC、水溶性离子及元素组分特征,利用PMF模型解析PM2.5的来源.结果表明,采样期间威海市PM2.5日均质量浓度为(33.80±22.45)μg·m-3,NO-3、NH+4、SO■、OC和EC是其主要组分.作为沿海城市其Cl-占比相对较高,同时PM2.5组分特征体现出颗粒物成分受本地工业特征污染物排放的影响.NO-3/SO■和OC/EC比值均表明威海市采暖期移动源对PM2.5贡献大;水溶性离子中酸碱离子比例分析表明,威海市采暖期PM2.5呈弱碱性,NH+4过量,主要以NH4NO3... 相似文献
13.
利用宽范围粒径谱仪(WPS)、EMS系统、KC-120H中流量采样器、850professional IC型离子色谱分析仪和热/光碳分析仪(DRI2001A)分别观测了临安大气本底站2015年1月9~31日10 nm~10μm气溶胶数浓度粒径分布、常规污染气体浓度、PM_(2.5)浓度及水溶性离子和OC、EC的浓度,利用PMF模式对PM_(2.5)进行来源解析,并分析了不同污染源下气溶胶粒子的谱分布及日变化特征.结果表明,临安大气本底站大气气溶胶数浓度平均为5 062 cm~(-3)·nm~(-1),主要集中在10~400 nm.PM_(2.5)的平均浓度和NO_2、SO_2、CO的平均体积分数分别为123.6μg·m~(-3)、22.6×10~(-9)、34.0×10~(-9)和2.2×10~(-6).水溶性离子以NO_3~-、SO_4~(2-)、NH_4~+为主,平均浓度分别为19.2、15.4和10.8μg·m~(-3),分别占总水溶性离子的37.9%、30.4%、21.4%.OC和EC的平均浓度分别为24.4μg·m~(-3)和6.6μg·m~(-3).冬季临安大气本底站PM_(2.5)主要来自二次相关源、燃煤排放、机动车排放、扬尘和生物质燃烧,贡献率分别为42.3%、21.4%、17.1%、8.7%和10.6%.不同来源气溶胶数浓度谱分布差异较大,二次相关、机动车排放、扬尘和生物质燃烧气溶胶数浓度谱均为单峰型分布,峰值分别位于120、50、100和90nm.燃煤颗粒物数浓度谱分布为双峰型分布,峰值分别位于25 nm和100 nm,浓度为19 842 cm~(-3)·nm~(-1)和18 372 cm~(-3)·nm~(-1).二次相关源、燃煤源、机动车排放、扬尘和生物质燃烧表面积浓度谱均为三峰型分布,最大峰值分别位于650、210、160、180和575 nm.不同排放源气溶胶颗粒物数浓度和表面积浓度日变化特征基本一致,多呈双峰型分布,主要受边界层日变化和人类活动影响. 相似文献
14.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%). 相似文献
15.
于2014年12月2~24日在上海市城区对大气中细粒子及其化学组分进行了在线连续观测,基于在线数据运用正定矩阵因子分析法(PMF)、化学质量平衡法(CMB)和多元线性模型(ME2)这3种受体模型开展颗粒物源解析并进行相互验证.结果显示,基于在线数据共获得了8类污染源,包括二次硝酸盐、二次硫酸盐、二次有机碳、重油燃烧源、工业源、移动源、扬尘源和燃煤源.其中二次硝酸盐、二次硫酸盐、二次有机碳等二次污染源(44.9%~64.8%)对PM2.5的贡献最大,移动源(16.8%~24.8%)和燃煤源(5.6%~14.9%)的贡献次之,其他源类的贡献相对较小. 3种模型获得的污染源特征组分和来源结果对比表明, 3种模型获得的二次硫酸盐、二次硝酸盐、二次有机碳、移动源的源解析结果较接近,说明模型对这4类源的模拟较好.ME2和PMF模型对燃煤源、扬尘源的拟合结果要好于CMB;工业源则是CMB的结果更好. 相似文献
16.
为了解COVID-19管控期间苏州市PM2.5中金属元素浓度变化和来源,利用多金属在线监测仪于2019年12月1日~2020年3月31日测定了14种金属元素小时浓度,分析停产前、停产期和复工期金属元素浓度变化,并采用PMF模型分析其污染来源.结果表明,停产期Cr、 Mn、 Zn和Fe浓度降幅最大,较停产前分别降低了87.6%、 85.6%、 78.3%和72.2%;复工期Mn、 Cr、 Zn和Fe浓度升幅最大,较停产期分别增加了227.0%、 215.4%、 147.4%和113.4%.K在3个阶段日变化均不相同;Zn在3个阶段日变化均呈单峰形,但峰宽和峰值出现时间有所不同;Fe、 Mn、 Pb、 Se和Hg日变化无明显变化,仅仅是浓度发生了变化;Ca、 Ba、 Cu、 As、 Cr和Ni停产期和复工期日变化较停产前变化较大. PMF模型来源解析结果表明,金属元素主要来源于扬尘、机动车、燃煤、工业冶炼和混合燃烧源,其中工业冶炼源浓度变化最大,停产期浓度下降了89.0%,复工期浓度较停产期上升了358.0%. 相似文献
17.
为研究关中地区冬季PM2.5中碳气溶胶的污染特征和来源,于2012年12月至2013年2月在西安、宝鸡、渭南和秦岭进行PM2.5的采集,并利用热光反射法测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC).结果表明,4个采样点OC的平均质量浓度分别为47.8、45.8、31.2和37.0μg·m-3,EC分别为8.5、6.7、7.6和5.7μg·m-3,总碳气溶胶(total carbonaceous aerosol,TCA)分别占PM2.5的36.4%、46.2%、36.9%和33.4%.OC和EC的相关性在西安(R2=0.93)和秦岭(R2=0.91)高于宝鸡(R2=0.58)和渭南(R2=0.62),表明OC和EC在西安和秦岭可能具有更为相似的来源,也可能具有更高的混合程度.所有样品的OC/EC比值均大于2.0,表明有二次气溶胶(secondary organic carbon,SOC)的生成,4个采样点SOC分别占OC的21.6%、40.3%、23.2%和27.8%.正定矩阵因子分析法(positive matrix factorization,PMF)解析结果显示,燃煤是关中地区冬季碳气溶胶的首要来源,占45.3%~47.9%,汽油车和生物质燃烧是次要来源,分别占26.1%~33.1%和14.3%~20.1%,此外柴油车也有一定贡献. 相似文献
18.
为探究川南城市群(自贡、泸州、内江和宜宾)冬季大气重污染过程中PM2.5中金属元素的浓度特征和来源,在2018年12月30日至2019年1月14日,使用膜采样方法对PM2.5中的金属元素进行测定,并运用富集因子法(EF)和正定矩阵因子分解法(PMF)对金属元素来源进行解析.同时采用自贡市在2015年同期金属元素观测数据,探究自贡市在“大气十条”实施中期与实施结束后的金属元素污染与富集程度变化情况.结果表明:(1)不同城市细颗粒物中各金属元素浓度与占比差异不大,4个城市中浓度与占比较高的元素呈现相似性,Al、Sb和Fe元素占比位于前列.从自贡市不同观测期对比来看,除Tl外各元素浓度均有变化.(2)富集因子计算结果表明,城市群中Cr(自贡与宜宾)、Ni、Cu、As、Se、Ag、Cd、Sb、Tl和Pb元素的富集程度较高.自贡市不同观测期的元素富集程度对比显示,除Cu元素外,2018年冬季观测期各元素富集程度均有减小趋势.(3)PMF源解析结果表明,各城市中金属元素主要来源为扬尘源、燃煤源、工业源与交通源,同时各污染源之间存在混合贡献.各城市主要污染源贡献不同,自贡以交通扬尘源与混合源为主;泸州以工业源为主;内江市各污染源贡献占比相近;而宜宾市则以交通源为主导. 相似文献
19.
细粒子(空气动力学直径小于2.5μm的颗粒物)污染是许多城市重要的大气环境问题.从1999年至2000年对北京市细粒子展开了4次采样和化学分析,有效采样天数为40d.利用正定矩阵分解(PMF)方法对细粒子的来源进行了分析.化学成分包括EC(元素碳)、有机物、SO42-、F-、Cl-、Fe、Ca、K、Mg、Al、Na、Zn、Mn、Ti、Pb、Ba和P等17种.发现主要来源有6类:地面扬尘、建筑源、生物质燃烧、二次源、机动车排放和燃煤. 相似文献
20.
为研究山西大学城PM2.5中元素的污染特征及来源,采用能量色散X射线荧光光谱仪(energy dispersive X-ray fluorescence spectrometer, ED-XRF)对研究区域2017年PM2.5样品中21种元素进行分析,并对Mn、Zn、Cu、Sb、Pb、Cr、Co和Ni等重金属进行健康风险评估,同时采用主成分分析方法(principal component analysis, PCA)和正定矩阵因子分解法(positive matrix factorization, PMF)定量解析元素的主要来源.结果表明, 2017年山西大学城PM2.5中21种元素中Ca质量浓度最高,其次是Si、Fe、Al、S、K和Cl,这7种元素占元素总质量浓度的95.71%.其中,Cr元素浓度超过我国环境空气质量标准年平均浓度限值的104倍.春季、夏季和冬季PM2.5中Ca质量浓度最高,而秋季S元素质量浓度最高.对3类人群具有非致癌风险的元素均为Mn,且风险大小依次为儿童>成年男性>... 相似文献