共查询到18条相似文献,搜索用时 93 毫秒
1.
藏北草地地上生物量及遥感监测模型研究 总被引:2,自引:0,他引:2
草地退化已成为藏北地区面临的主要生态环境问题。为了定量监测草地生物量和退化草地的生物量动态变化,利用2004 年8—9 月藏北地区草地地上生物量最大时期的地面实测数据,分析了其地上生物量大小和空间分布特征,在此基础上,结合同期的Terra MODIS植被指数数据,建立了草地地上生物量的遥感监测和估算模型。主要结论如下:①由于受高寒气候、土壤、水分等环境因素的限制,8—9 月藏北地区平均草地地上生物量较小,为96.88g/m2,其中绿色鲜草的比重在80%以上;不同区域不同草地类型地上生物量差异很大,范围在37.10~589.12 g/m2,平均而言,高寒沼泽化草甸的地上生物量最大,达356.84 g/m2,其次是温性草原(64.48 g/m2)和高寒草甸(61.61 g/m2),高寒草原草地最低,为48.87 g/m2;②基于MODIS NDVI的合成、生长型、指数函数、逻辑斯谛等4 个模型是估算藏北草地地上生物量的最优模型;③生物量的空间分布呈东南向西北减少态势,东南部部分地段在100 g/m2以上,西北部则在20 g/m2以下。 相似文献
2.
综述了三江源区高寒草地在种群生态、群落结构与特征、群落演替、高寒草地土壤及微生物、高寒草地分布与分类、高寒草地生态与气候背景等生态领域的研究现状,分析了目前三江源区高寒草地生态研究的局限性,展望了三江源区高寒草地生态研究的发展趋势。 相似文献
3.
三江源区位于青藏高原腹地,作为长江、黄河、澜沧江三大河流的发源地,是我国重要的水源涵养和生态功能保护区.为了及时准确地获取该区域草地生物量信息,根据三江源区高寒草甸、高寒草原采样点的地上生物量实测值,结合遥感植被指数、海拔、气象观测数据(光合有效辐射、年均气温、年降水量)构建BP神经网络模型,估算2001—2010年三江源区的草地地上生物量,并对其进行分县统计和年际变化分析.结果表明:① 通过多次反复的训练与测验得到的BP神经网络模型,对高寒草甸、高寒草原的地上生物量模拟值与实测值的R2分别为0.73、0.79,表明BP神经网络模型具有较好的模拟效果.② 2001—2010年三江源区草地地上生物量多年平均值为172.34 g/m2,其中高寒草甸为214.81 g/m2,高寒草原为130.07 g/m2.③ 三江源区草地地上生物量的空间分布具有明显的空间异质性,呈从东南向西北递减的趋势.其中,位于东部的河南县草地地上生物量最高,为413.46 g/m2;而北部的曲麻莱最低,仅为69.04 g/m2.④ 2001—2010年三江源区草地地上生物量呈缓慢波动上升趋势,平均升幅为0.93 g/(m2·a).研究显示,利用站点地上生物量实测数据构建BP神经网络模型并对地上生物量进行模拟,对于分析区域尺度的草地地上生物量分布格局和变化趋势行之有效. 相似文献
4.
三江源区高寒草甸退化草地土壤侵蚀模型与模拟研究 总被引:1,自引:0,他引:1
探讨三江源区高寒草甸退化草地土壤侵蚀模型的建立方法并利用模型对土壤侵蚀进行模拟。通过构建NetLogo模型,模拟了研究区3年时限土壤侵蚀面积的变化,表现为随时间的延续侵蚀面积增大,模拟结果与实测结果间未达极显著差异(P〉0.01)。以研究区当前土壤侵蚀现状为初始状态,模拟单位草地面积上侵蚀比例达100%时经历的年限,则坡地中度退化、坡地重度退化、滩地中度退化、滩地重度退化样地经历的年限分别为27.10±0.23 a、13.83±0.40 a、32.03±0.29 a、25.70±0.30 a。 相似文献
5.
基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究 总被引:4,自引:2,他引:4
推动国产遥感卫星在资源环境领域中的应用对于促进我国航天事业发展、减少科研成本具有重要意义。我国近期发射的环境减灾卫星具有时间分辨率高、可获得高光谱影像的特点,在陆地资源遥感监测领域将有广阔发展空间。研究于2009年夏季获得三景呼伦贝尔草原区遥感影像和对应地面实测草地生物量信息,基于这些数据探讨了利用环境减灾卫星多光谱影像和植被指数反演草地生物量的可行性。结果表明基于影像提取的NDVI、OSAVI、MSAVI、SAVI、EVI、MTVI2、WDRVI和GNDVI等光谱指数均与草地生物量有较好的定量关系。其中,MTVI2结果最好,预测决定系数达0.61,交叉检验决定系数为0.58,均方根误差仅为58.6 g.m-2,基于MTVI2和环境减灾卫星多光谱影像可准确生成草地生物量空间分布图。 相似文献
6.
青藏高寒草地植被生产力与生物多样性的经度格局 总被引:2,自引:1,他引:2
沿昌都到噶尔县的经度梯度,对西藏典型高寒草地植被生产力与植物多样性开展了1 700 km的野外样带调查。实验结果表明:高寒草地的群落结构特征(地上生物量、地下生物量、盖度和密度)与生物多样性(物种丰富度、物种多样性和物种均匀度)均具有明显的经度分布格局。整体而言,这些特征参数均表现出自西向东沿荒漠草原—典型草原—草甸草原呈逐渐递增的趋势;其经度格局主要受降雨量和平均气温所趋动,但降雨量和平均温度的影响在不同指标间存在较大差异;地上生物量由二者共同决定,而物种丰富度受降雨量的影响更大。西藏高寒草地的物种丰富度与地上生物量间存在显著的幂指数关系(y = 0.219 7 x 0.754 9 , R2= 0.61, P< 0.01)。上述规律的发现,不仅有利于我们更好地理解高寒草地对未来气候变化的响应机制与适应途径,也将帮助我们合理制定放牧策略以实现该地区高寒草地的可持续发展。 相似文献
7.
盐城海滨湿地植被地上生物量遥感估算研究 总被引:2,自引:16,他引:2
以盐城湿地自然保护区核心区的ETM+图像数据和同期野外实测的31 个样方地上生物量干重、湿重数据为数据源,分析了15 个遥感信息变量与湿地植被地上生物量干重、湿重的相关关系,并选择在0.01 水平上显著相关的8 个遥感变量建立一元线性回归模型、一元曲线回归模型以及多元逐步回归模型,并对比得出最优模型,进而计算出整个研究区的地上生物量。研究得出:①与研究区湿地植被地上生物量干重和湿重相关性最大的都是ETM+4 波段,干重的相关系数为0.833,湿重的相关系数为0.796;②研究区植被地上生物量干重和湿重的遥感估算模型都是一元三次函数模型,且干重模型的拟合精度要优于湿重模型;③得到研究区地上生物量干重总重量为2.28×108 kg,湿重总重量为6.10×108 kg。 相似文献
8.
若尔盖亚高山草甸地上生物量与植被指数关系研究 总被引:3,自引:1,他引:3
为探讨亚高山草甸地上生物量和植被指数的关系,更好服务于草地生态建设,论文利用2008年7月覆盖若尔盖地区的TM影像,分别建立了7种植被指数(NDVI、RVI、DVI、SAVI、MSAVI、PVI、GVI)与地上生物量的线性和4种非线性(二次多项式、三次多项式、对数、幂函数)回归模型。研究结果表明植被指数(NDVI、DVI、SAVI、MSAVI、PVI、GVI)与地上生物量模型表现出三次多项式回归模型最优,再次是二次多项式模型、线性模型,相对较差的是指数模型;而基于RVI的地上生物量模型表现为指数模型最优,其次为三次多项式模型、二次多项式模型、线性模型。分析表明,基于RVI的地上生物量幂函数模型的模拟效果最好,复相关系数R2=0.817 7,精度检验结果表明该模型的平均误差为6.80%,拟合精度达93.20%,根据此模型模拟出若尔盖县草地地上生物量分布图,表明该县草地生物量东南部较高而西北部较低。 相似文献
9.
生物量碳密度是生态系统表征碳截存能力的重要功能特征之一。为明晰三江源区高寒草地生物量碳密度特征,选取源区内3个县(玛沁县、甘德县、达日县)的退化天然草地(黑土滩)、退化人工草地、未退化天然草地为研究对象,通过野外调查取样和室内分析相结合的方法,对样区地上生物量、根系生物量及其碳密度进行测定与分析。结果表明:“黑土滩”地上生物量高于退化人工草地和天然草地;“黑土滩”活根和死根生物量都低于天然草地和退化人工草地。退化人工草地、“黑土滩”和天然草地的总生物量碳密度分别为719.47、706.57和2 233.09 g/m2。草地退化不仅改变了生态系统的生物量分配,而且改变了地上部分、活根和死根中的碳密度分配比例。退化人工草地和天然草地的活根和死根碳密度占总生物量碳密度的90%以上,“黑土滩”活根和死根碳密度占79.41%。活根碳密度与总生物量碳密度的比值在3种不同草地群落间的变化较地上植被和死根的大,因此,活根碳密度比例可以作为草地退化的敏感指标。 相似文献
10.
论文利用2013—2014年的MOD13Q1数据、草地地上生物量鲜重实测数据、多年降水数据和统计年鉴数据,建立了祁连县草地地上生物量与牧草鲜重的遥感监测模型以及不同季节放牧草场的理论载畜量模型,分析了天然草地草产量年内动态变化与载畜量平衡状况并对草畜调控进行模拟。结果表明:MODIS增强型植被指数EVI的指数函数可以较好地模拟祁连县草地地上生物量鲜重,精度达到71%;年内牧草生长呈单峰曲线,7月草地可食产量达到峰值 2 322.61 kg/hm2,12月最低,为702.06 kg/hm2;祁连县冷暖季平均可食鲜草产量分别为1 728.14和1 604.70 kg/hm2,年可食鲜草总量分别达到7.74×108和7.82×108 kg;暖季、冷季和全年的理论载畜量分别为1.517 8、0.637 0和0.931 4羊单位/hm2,暖季、冷季和全年的超载率分别为101.70%、261.19%和149.22%;保持现有的家畜数量,需在暖季草场和冷季草场分别补饲牧草0.36×108 和7.17×108 kg;保持现有草场,则暖季草场和冷季草场分别需要减6.68×104和53.64×104羊单位;暖季不进行补饲,冷季草场家畜在减少40%的情况下,依旧需要补饲1.17×108 kg。 相似文献
11.
三江源地区是研究土壤生态系统功能响应气候变化的热点区域.为了研究三江源地区高寒草地土壤剖面功能特征和驱动机制沿发生层的差异,分析了高寒草地土壤剖面不同发生层的土壤功能指标(包括呼吸、氮转化速率和酶活等)以及与环境因子之间的相关关系.结果表明,土壤功能特征在高寒草甸和高寒草原之间不存在显著差异,表层土相比于深层土具有更高的呼吸、氮转化速率和酶活.土壤理化性质中全氮含量是不同发生层土壤功能特征的关键驱动因子,分别解释了土壤功能特征18.3%、21.4%和27.5%的水平分异.气候和植被因子主要在表层土中通过改变土壤理化性质间接影响土壤功能,但是大气氮沉降在深层土中对土壤功能仍存在影响.结果显示,三江源地区高寒草地土壤表现出显著的氮受限特征,为全球气候变化背景下土壤功能多样性的维持和对气候变化的响应提供了新的见解. 相似文献
12.
三江源区位于青藏高原腹地,是我国长江、黄河、澜沧江三大河流的发源地.为了准确估算该地区草地生态系统的净生态系统生产力,收集整理了2001—2010年青藏高原10个通量观测站点的观测数据,构建了三江源区草地生态系统NEP(net ecosystem production,净生态系统生产力)估算模型,并在站点尺度进行了模型参数化和精度验证;结合区域尺度气象和遥感数据,估算了三江源区草地生态系统NEP.结果表明:① 2001—2010年三江源区草地生态系统多年平均NEP空间分布具有明显的空间异质性,大部分地区表现为碳汇,NEP(以C计)平均值为41.8 g/(m2·a).② 三江源区草地生态系统NEP呈波动增加趋势,从2001年的20.0 g/(m2·a)增至2010年的82.5 g/(m2·a);除2002年表现为弱碳源外,其余年份均表现为碳汇,并以2010年碳汇能力为最强.③ 2001—2010年三江源区草地生态系统NEP平均年增长率为5.4 g/m2;NEP年际变化率空间分布显示,大部分地区NEP呈增加趋势,仅有东南部和中部部分区域NEP呈下降趋势.研究显示,2001—2010年三江源区草地生态系统表现为碳汇,并且由于气候的暖湿化趋势,碳汇强度总体表现为增强. 相似文献
13.
青海三江源地区退化草地土壤全氮的时空分异特征 总被引:3,自引:1,他引:3
在第二次土壤普查和2009、2010年实地采样的基础上,运用地统计学和GIS技术研究了青海三江源地区1980~2010年退化草地0~10 cm、10~30 cm、30~50 cm全氮的时空分异特征.结果表明,进行特异值处理后,两期的土壤全氮的均值都表现出从表层到底层下降的趋势.从同一土层对比来看:2010年的土壤全氮的含量平均值及变异系数比1980年低.经对数转换后两期数据符合正态分布,经过半方差函数模型的拟合得出,两期同一层次上的块金效应2010年都比1980年小,表示三江源地区各分层上全氮的空间分布的自相关性在加强,结构性因素对土壤全氮的空间分布起着越来越重要的作用.普通克里格插值结果表明,30年来三江源地区土壤全氮的含量变化存在地区差异,南部、中部、东部以递减为主,西部的部分地区以增加为主. 相似文献
14.
为实现三江源区水源涵养功能评估,服务区域生态服务价值估算,从水源涵养的概念出发,解析水源涵养功能的内涵特征和表征指标,提出了三江源区水源涵养功能评估技术框架,并基于SWAT模型建立三江源区水文模型,通过年尺度、月尺度和日尺度的水文模拟,完成三江源区水源涵养功能定量评估.从水文模型校准结果来看,直门达、唐乃亥和香达3个验证站日径流量最大相对误差不超过17.0%,月径流量最大相对误差不超过13.0%;日尺度模型中直门达站模拟效率系数超过了0.6,其他两个站也超过了0.5,月尺度模型中3个验证站模拟效率系数均超过0.6以上;日尺度模型和月尺度模型验证结果均可接受,在一定程度上较好地揭示出了三江源区的水量输出过程、趋势和规律.应用该模型对水源涵养功能进行定量评估,长江流域、黄河流域、澜沧江流域水资源供给量分别可达到158.8×108、326.2×108、72.6×108 m3;考虑土地利用和植被变化对流域径流输出的影响作用,植被破坏可能导致长江流域、黄河流域和澜沧江流域地下径流量分别可能减少98.6×108、200.1×108和44.5×108 m3;在相同降水条件下,低植被覆盖会导致长江流域、黄河流域和澜沧江流域年最大流量的平均值、最大值、最小值分别增加了约80%、60%和30%.研究显示,三江源区在保障下游用水、提升径流调节能力和缓解防洪压力等方面具有突出的作用. 相似文献
15.
三江源区是黄河、长江和澜沧江的发源地.为研究三江源区生态系统状况变化及其可能成因,利用InVEST(Integrate Valuation of Ecosystem Services and Tradeoffs)、CASA(Carnegie-Ames-Stanford Approach)、RUSLE(Revised Universal Soil Loss Equation)和RWSQ(Revised Wind Erosion Equation)模型模拟,结合实地观测数据,系统全面地评估2000年以来三江源区生态系统构成、质量和服务功能变化,并揭示其成因.结果表明:① 2000—2010年三江源区生态系统结构基本稳定.草地退化状况轻微好转,产草量和生产力微弱增加.植被生长季水热条件的改善是促使产草量增加和草地退化态势趋缓的重要原因,同时生态工程的实施也发挥了积极作用.② 2005—2010年局部重点生态工程区的水土流失状况轻微好转,但区域整体好转趋势不明显.土壤中w(有机质)明显增加,但对于土壤保持功能起到关键作用的植被根系层的恢复却比较缓慢,降雨侵蚀力的增强加速了土壤侵蚀过程,生态系统的土壤保持功能基本上没有提高.③ 2000—2013年地表水、地下水资源量和土壤湿度均呈明显增加趋势,水质稳定在GB 3838—2002《地表水环境质量标准》划定的Ⅰ~Ⅱ类.降水量和冰川/积雪融水量增加导致径流量增大,气候变暖引起的冻土退化导致地下水库枯水季径流调节作用增强.④ 生态工程实施后,生物栖息地的生境退化状况轻微改善,野生动物的分布范围和种群数量都有了较为明显的增加. 相似文献
16.
三江源区生态系统服务间接使用价值评估 总被引:14,自引:3,他引:14
论文利用替代成本法、机会成本法和影子工程法等经济学方法,对三江源区生态系统提供的间接使用价值进行了评估。研究结果表明:2008年三江源区生态系统的间接使用价值共计1.74×1011元,其中水源涵养价值为1.07×1011元,占61.38%,土壤保持价值为4.60×1010元,占26.50%,气候调节价值为2.01×1010元,占11.56%,空气质量调节价值为9.56×108元,占0.55%。该结果突出反映了三江源区作为水源发源地在水量平衡、调节区域水分循环和改善水文状况等方面做出的贡献。 相似文献
17.
为研究三江源区河流流量变化及其可能成因,在1956—2012年水文气象资料基础上,借助Mann-Kendall趋势检验、流量历时曲线等数理统计方法,分析了该区域流量的年际和年内变化,并通过双累积曲线、相关分析和贡献率分析等方法对影响流量变化的因素进行了探讨.结果表明:①近57 a来澜沧江源区和长江源区的年均流量均呈增加趋势,变率分别为0.47和2.12 m3/(s·a),黄河干流流量轻微减少〔-0.60 m3/(s·a)〕,部分支流流量有所增加;河流流量的年内分布有从双峰型向单峰型过渡的趋势.黄河源区高流量和低流量都减少,长江源区高流量和低流量均增加,而澜沧江源区高流量减小、低流量增加.②气温和降水的共同作用导致河流流量的年内分布呈双峰型或单峰型的特点,降水为主导因素,秋季降水量减少导致部分河段流量分布从双峰型向单峰型过渡.③河流流量和降水量的变化基本保持一致.黄河源区和澜沧江源区流量主要受东亚季风和西风控制,而长江源区流量主要受到青藏高原季风和东亚季风的影响.20世纪80年代以来,三江源区0 ℃等温层高度(16.28 m/a,P<0.001)和>0 ℃年积温(7.30 ℃/a,P<0.01)均呈显著增加趋势.在区域快速增温背景下,冰川和积雪消融给河流流量造成的短期增加效应不可持续,由此对水源涵养功能构成严重威胁. 相似文献
18.
鉴于生态系统服务的多样性和评估方法的复杂性使得生态系统服务研究难于纳入到政府决策和政绩考核的问题,以三江源区为例,提出生态系统服务物质当量的概念,并发展了基于能值理论的物质当量估算方法;进而通过构建用于调节生态系统类型之间与生态系统内部差异的均衡因子和调整因子,发展了生态系统服务快速核算方法.结果表明:三江源区主导生态系统服务(包括水源涵养、土壤保持和生态系统固碳)所具有的能值量为2.74×1022sej/a,标准物质当量(即物质当量单位)的能值基准值为1.58×1017sej/(km~2·a),由此估算的物质当量为173 618.80当量/a,单位面积物质当量为0.56当量/(km~2·a),其中,水源涵养、土壤保持和生态系统固碳服务的物质当量所占比例分别为52.72%、28.14%和19.14%.三江源区主导生态系统服务物质当量的空间分布特征表现为从东南向西北逐渐递减的变化趋势;分县(乡)估算的主导生态系统服务物质当量的空间分布与其单位面积物质当量存在较大差异,前者的高值区主要位于治多县、曲麻莱县和杂多县,后者则主要位于尖扎县、同仁县、久治县和班玛县.基于直接评估法估算的各县(乡)单位面积物质当量与基于快速核算方法估算结果的决定系数为0.72,均方根误差为0.25当量/(km~2·a).研究结果有助于实现生态系统服务的快速评估. 相似文献