首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
为研究以石化工业为主的奎屯市-独山子区-乌苏市(简称“奎-独-乌”)区域大气对流层NO2柱浓度的时空变化,基于地基多轴差分吸收光谱仪(MAX-DOAS)于2018年2月—2019年7月在各城市城区中心进行固定监测(09:00—20:00),以及在环奎-独-乌区域进行车载移动监测(10:00—15:00),结合地形地貌、气象、工业分布和人为排放量等因素,反演分析该区域对流层NO2柱浓度的时空变化规律.结果表明:①奎-独-乌区域对流层NO2柱浓度日变化呈早晚高、中午低,冬季高、夏季低的特点,对流层NO2柱浓度季节性变化呈冬季(11.8×1015 molec/cm2)>秋季(9.46×1015 molec/cm2)>春季(7.46×1015 molec/cm2)>夏季(4.33×1015 molec/cm2)的特征.奎-独-乌区域对流层NO2柱浓度最高值均出现在冬季(1月),呈独山子区(22.23×1015 molec/cm2)>奎屯市(21.30×1015 molec/cm2)>乌苏市(18.34×1015 molec/cm2)的特征.②奎-独-乌区域大气对流层NO2柱浓度存在空间集聚现象,且区域内部差异显著.不同季节高值主要出现在区域内交通交错区(奎屯立交桥、独山子立交桥)和工业集中分布区,最低值均出现在奎-独-乌区域西南部的乌苏市,且位于主导西风通道的上风向.③结合后向轨迹分析发现,奎-独-乌区域气流来源中冬季气流运动在水平方向和垂直方向上均不利于污染物扩散,夏季西北风向导致下风向路段NO2浓度相对较高,该区域大气NO2污染物以本地输送为主,且在城际间存在污染物的传输与积累.④奎-独-乌区域的能源结构以煤炭为主,其固定源排放以工厂和电力部门为主,而乌苏市交通移动源所产生的NO2排放总量远高于奎屯市和独山子区.该区域冬季燃煤6个月,低风速(1.5~3.0 m/s)频率持续时间较长,加之独特的山盆结构形成的“山谷风”,有较厚的逆温层,不利于污染物远距离扩散.研究显示,能源工业结构背景下形成的奎-独-乌区域环境有利于大气污染物的聚集和积累,其污染源以本地污染为主.   相似文献   

2.
基于OMI数据的中国中东部臭氧及前体物的时空分布   总被引:2,自引:0,他引:2       下载免费PDF全文
基于OMI卫星资料,分析了2005—2014年中国中东部地区对流层低层ρ(O3)、对流层NO2柱浓度及甲醛总柱浓度的时空演变趋势及相互关系. 结果表明:近10年来,中国中东部地区对流层低层ρ(O3)呈上升趋势,2005年及2014年分别为60.64、69.43 μg/m3,年均增长率为1.6%;对流层低层ρ(O3)增长的区域面积不断扩大,部分地区增长超23 μg/m3;呈春夏季高,冬季最低的分布趋势. 2005—2012年,对流层NO2柱浓度呈上升趋势,2005年及2012年分别为4.41×1015、5.90×1015 mol/cm2,年均增长率为4.8%;2012年后呈下降趋势,下降的区域面积逐步扩大,部分地区降低约 15×1014 mol/cm2;呈冬季最高、夏季最低的分布特征;2005—2010年甲醛总柱浓度呈上升趋势,2005年及2010年分别为9.74×1015、1.59×1016 mol/cm2,年均增长率为12.6%,2010年后呈下降趋势;呈夏季最高、冬季最低的分布特征;甲醛总柱浓度增长的区域面积逐渐扩大. 利用甲醛与NO2柱浓度比值探讨臭氧控制区的空间分布特征,表明鲁豫晋、京津冀、长三角及珠三角地区中心城市属于VOCs控制区,周围城市属于VOCs-NOx协同控制区,其他地区属于NOx控制区.   相似文献   

3.
基于OMI卫星遥感反演的NO2柱浓度数据,分析了近11a甘肃省对流层NO2柱浓度的时空变化及相关影响因素,同时利用HYSPLIT模型探究了大气污染物的来源.结果表明:从空间上,NO2柱浓度呈现出由甘肃东北区向西南区递减趋势,最高值主要分布于庆阳市全境和平凉市少部分地区.从2008~2014年NO2柱浓度值不断增长至最高值,高值区逐步扩大;2015~2018年NO2柱浓度值波动变化,呈现出向周围区域递减的趋势,高值区范围缩小;从时间上,2008~2018年对流层NO2柱浓度整体呈上升趋势,对流层NO2柱浓度四季均值分布为:夏季>春季>秋季>冬季;NO2柱浓度每年在6~8月达峰值,9月后开始下降,年内谷值出现在12月份~次年2月份;对研究区NO2柱浓度的贡献最大的是自然要素.高温、降水有利于土壤排放NO2,植被覆盖率对NO2起到一定的消减作用.利用HYSPLIT得出2009~2018年每年7月庆阳市NO2的外部输送路径,其中主要路径以陕西地区为主.  相似文献   

4.
为了探究我国东海至南大洋航线海洋近地层大气NOx的分布特征,于2015年11月-2016年1月,利用中国极地科学考察船"雪龙号"的观测平台,采用Saltzman法对中国东海至南大洋航线海洋近地层大气NOx日均浓度进行了监测.结果表明,中国东海至南大洋航线海洋近地层大气ρ(NOx)的变化范围为0.001~0.038 mg/m3,ρ(NO)的变化范围为0.001~0.033 mg/m3,ρ(NO2)的变化范围为0(未检出)~0.015 mg/m3.中国东海至南大洋航线海洋近地层大气中,NO是NOx的主要成分.南极圈外海洋近地层大气中NOx的分布特征显示距离陆地越近,ρ(NOx)越高,NO2/NO(二者质量浓度比值)越大,反映出海陆差异及人为污染对海洋近地层大气的影响.远离陆地的南大洋航段ρ(NOx)显示较低的大洋背景值.南桑威奇群岛的火山活动导致附近海域异常高浓度的NOx分布,ρ(NOx)最高值达0.160 mg/m3,ρ(NO)为0.145 mg/m3,ρ(NO2)为0.015 mg/m3.西风带的阻隔导致该区域NOx向周围扩散时,难以穿越西风带,向南极大陆边缘扩散的趋势更加强烈,影响大范围南大洋近地层大气NOx分布.人为活动可能是南极半岛和中山站附近海洋近地层大气高ρ(NOx)和高NO2/NO的原因之一.   相似文献   

5.
张逸扬  周红根  乔贺  徐进  刘寅 《环境科学研究》2021,34(10):2306-2315
南京市作为长三角地区的核心城市之一,工业发达,大气污染状况较为严重.为深入研究南京市污染状况,利用MODIS以及CALIPSO的气溶胶产品对南京市2011-2019年气溶胶特性进行分析,并基于地基反应性气体分析仪数据分析了冬季南京市大气中4种常见反应性气体(SO2、NO、NO2、O3)的体积分数时序状况.结果表明:①南京市2011-2019年气溶胶光学厚度(AOD)整体呈下降趋势,冬季AOD值可达0.7,污染程度为四季中最高,且气溶胶以粗粒子和吸收性粒子为主.②南京市近地层大气(2 km以内)以大粒子和不规则颗粒物为主,2~6 km高度层内细粒子与规则颗粒物的占比逐渐增多,且2~6 km高度层内粒子的体积大小变化不大.③冬季4种常见的反应性气体中,φ(NO)在大气中的变化最为显著,且最高值可达160×10-9,φ(NO2)与φ(O3)在大气中的变化趋势相反.由于排放限制措施、工厂脱硫措施的推广以及光化学反应的影响,导致φ(SO2)较低,仅在3×10-9左右.结合OMI卫星观测数据发现,受新冠肺炎疫情下工厂停工的影响,2020年初南京市φ(NOx)维持在较低水平.研究显示,近年来南京市颗粒物污染状况有所改善,但仍需注意粗颗粒物的排放,需严格控制工厂气态污染物,尤其是NOx的排放.   相似文献   

6.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   

7.
2018年,汾渭平原首次被确定为大气污染防治重点区域,成为“蓝天保卫战”继京津冀地区的第二个主战场.本文利用卫星OMI传感器反演产品,对汾渭平原2016—2020年二氧化氮、臭氧和甲醛数据进行分析,结果表明:在空间上,汾渭平原NO2柱浓度有自东向西逐渐减弱的趋势.高浓度地区受煤炭、物流、钢铁、航空等产业,以及特殊地形等因素影响,沿山脉走势呈“人”字形分布.在时间上,年均NO2浓度呈总体减少趋势,2018年最大,2020年最小;月均变化呈U字型,1—8月,NO2柱浓度逐月降低,9—12月逐月增加.NOx敏感控制区、VOCS-NOx协同控制区,以及VOCS敏感控制区时的年均NO2柱浓度分别为1.48×1015~6.3×1015、6.3×1015~13.2×1015、13.2×1015~20.1×1015 molec·cm...  相似文献   

8.
马心怡  黄文晶  胡凝  肖薇  胡诚  张弥  曹畅  赵佳玉 《环境科学》2023,44(4):2009-2021
目前基于排放清单估算的区域和城市尺度上的人为CO2排放不确定性较大.为了我国实现碳达峰和碳中和的目标,亟需对我国的区域尺度,特别是大城市群的人为CO2排放进行准确估算.分别利用两种先验人为CO2排放数据(EDGAR v6.0清单和EDGAR v6.0联合GCG v1.0的改进清单)作为输入数据,采用WRF-STILT大气传输模型模拟长三角地区2017年12月至2018年2月大气CO2摩尔分数,再以安徽全椒高塔观测的大气CO2摩尔分数作为参考值,通过贝叶斯反演方法得到的比例因子改进了模拟结果,并实现了长三角人为CO2排放通量的估算.结果表明:(1)在冬季,相对于基于EDGAR v6.0模拟的大气CO2摩尔分数值而言,基于改进清单模拟的大气CO2摩尔分数与观测值更为一致;(2)模拟的大气CO2摩尔分数在夜间高于观测值,白天则相反,主要因为排放清单的CO2排放数据不能表征人为...  相似文献   

9.
以辽中县水文站为辽宁省典型城郊地区大气背景站点,针对大气污染物,ρ(PM2.5)和气象因子等进行了1年(2007年2月—2008年1月)的连续观测.研究了各污染物的浓度水平,日、季节变化以及来源特征.φ(O3),φ(CO),φ(SO2),φ(NO),φ(NO2),φ(NOx*),φ(NH3)和ρ(PM2.5)平均值分别为19.9×10-9,0.85×10-6,9.7×10-9,8.8×10-9,14.5×10-9,23.2×10-9,29.8×10-9和66.6 μg/m3. 除SO2外,各污染物浓度水平均优于我国《环境空气质量标准》(GB 3095—1996)的二级标准.φ(O3)在日间达到最大值,一次污染物呈现双峰分布.从季节变化来看,φ(O3)在夏季最高,春季最低.一次污染物如CO,SO2,NO以及PM2.5的浓度均在冬季达到最大值.地面监测的φ(O3)和OMI卫星反演的NO2 柱浓度的变换趋势相同,但地面观测的φ(O3)在春季明显低于柱浓度.后推气流轨迹分析结果表明,在φ(O3)较高的夏、秋季,从东北地区和渤海湾起源的气流贡献最大.   相似文献   

10.
利用臭氧监测仪(OMI)提供的大气污染监测数据,结合产业结构、汽车保有量、国家政策措施等,通过城乡NO2浓度差异的排放源分析方法提取能源金三角(EGT)地区2005~2019年对流层NO2垂直柱浓度时空变化特征并探讨影响区域大气NO2浓度驱动因素.结果表明,EGT煤炭化工源NO2浓度与第二产业产值增速的相关系数为0.71(P<0.05),说明本文方法所提取的长时序煤炭化工源NO2浓度能有效地指示产业结构调整和政策措施变化.NO2浓度从2005~2011年的90.56molc/m2增加至2012~2015年的720.77molc/m2,再下降至2016~2019年的247.36molc/m2,反映EGT经济发展模式经历了从小规模、中污染的点模式逐步发展成大范围、重污染的粗放模式,再到大范围、低污染的精工模式.与京津冀、华中、长三角等地区相比,EGT交通和工业排放对城市源NO2污染贡献的变化特征进一步反映城镇化水平的发展和产业结构的优化.与OMI相比,高分辨率对流层观测仪(TROPOMI)能在短时序上提供丰富的影像细节信息,且随着观测时长的增加,有望增强长时序大气NO2污染的精准监测.  相似文献   

11.
NO2是重要的痕量气体,对其监测有助于大气污染治理。本文基于Sentinel-5P大气污染监测卫星提供的对流层NO2浓度数据和总NO2浓度数据,借助谷歌地球引擎(google earth engine,GEE)分析了2018~2021年间中国大气NO2浓度时空变化特征,使用OLS模型揭示了中国地区NO2浓度的主要影响因子。结果表明:我国对流层NO2浓度空间分布呈现东高西低的总体格局,东中部城市群对流层NO2柱浓度水平明显呈现冬高夏低、春秋过渡的季节特征,西部大部分城市的四季变化不明显。北京、深圳、上海3所城市NO2柱浓度分布呈现出较为显著的圈层结构。OLS模型结果表明,中国地区NO2浓度变化受到社会经济和自然因素的共同影响,其中城市化程度是影响NO2排放的重要因子。  相似文献   

12.
为更好地了解京津冀地区NO2浓度的长期时空分布变化特征,对2005—2015年京津冀地区对流层NO2柱浓度数据进行了统计分析.结果表明,京津冀地区对流层NO2柱浓度在2005—2010年增加明显,年均复合增长率为6.8%,并在2010年达到峰值,为1 329.07×1013 mol/cm2;2010—2013年保持相对稳定;2013—2015年显著下降,降幅达26.2%.2015年NO2柱浓度为964.43×1013 mol/cm2,基本与2005年的浓度水平持平.北京地区NO2柱浓度最先开始下降并保持降低趋势,其中北京市城区降幅远大于郊区,并在2015年达到最低值,为1 647.38×1013 mol/cm2;天津市城、郊区NO2柱浓度变化相近,总体上均呈先增后减的趋势,并且均在2010年达到峰值,分别为2 686.96×1013、2 019.36×1013 mol/cm2;而河北省西南部(石家庄、邢台、邯郸市)在近两年降幅最为明显,均在35.0%以上.京津冀对流层NO2柱浓度呈由南向北递减的空间分布趋势,高值区主要分布于京津唐一带以及河北省南部沿太行山一带.研究显示,虽然近年来京津冀地区NO2柱浓度降幅明显,但相比于周边地区仍面临较大的减排压力.   相似文献   

13.
利用Aura卫星搭载的臭氧观测仪(OMI)反演的对流层NO2柱密度数据,分析了自2005年以来粤港澳大湾区(GBA)对流层NO2柱密度的空间分布特征、时间变化趋势及其影响因素.研究结果表明GBA对流层NO2柱密度从2005~2018年呈减少的趋势,每年递减约为2.8%.小波系数显示时间演化过程中存在9个月的主振荡周期,冬季浓度较高,夏季较低.人为排放和各种自然因素,导致了GBA对流层NO2柱浓度月变化在时间和空间上存在明显差异,最小值和最大值分别出现在6和12月,多年平均值分别为3.9665×1015和12.3423×1015molec/cm2.NO2在空间分布上呈现明显的空间分异特征,冬季12月最明显.NO2污染严重的高值区主要出现在中部地区,如广州市、佛山市和中山市,最大的对流层NO2柱密度可达18.8306×1015molec/cm2,大约是周边地区的3 倍,且高污染区域向四周逐渐扩散,连成一片.低值区主要在北部的肇庆市和东部的惠州市,多年平均的对流层NO2柱密度约为7.1400×1015molec/cm2.对流层NO2柱密度的增长率在不同区域的变化趋势呈现明显的差异,变化范围为-15×1015~6×1015molec/cm2,增长率百分比范围为-65%~65%.出现增长的地区主要是肇庆市北部和惠州市东部的低值区;对流层NO2出现明显减少的区域集中在中部的高值区,减少量最大的地区为广州市、佛山市和中山市交界处.  相似文献   

14.
利用2007~2020年臭氧检测仪(OMI) OMNO2d对流层NO2垂直柱浓度(TVCD)数据、欧盟基本气候变量质量保证计划(QA4ECV)基于卫星观测约束下的NOx日排放估算数据(DECSO)、大气红外探测仪(AIRS)臭氧(O3)垂直廓线AIRS2SUP数据,研究了汾渭平原NO2TVCD长期变化趋势及其对NOx排放变化的响应,以及二者变化对于对流层中下层O3的影响.结果表明,汾渭平原NO2TVCD于2012年达峰,峰值为(9.8±4.6) x1015molec/cm2,2013年后基本呈现逐年下降趋势;NO2TVCD冬季最高,夏季最低,冬季均值约为夏季3.6倍;NO2TVCD并非随NOx人为源减排单调下降,夏季NO2TVCD低百分位上升;NO2TVCD变率为(-1.5±0.6)%/a,低于NOx排放降幅的1/3,可能与人为NOx大量减排的背景下,对流层NOx自然源的贡献大且相对贡献不断上升有关;对流层中下层O3变率仅为(-0.2±0.2)%/a,近地层O3变率为(0.8±0.1)%/a,汾渭平原对流层O3生成基本处于VOCs控制区或者VOCs-NOx过渡区,减排NOx无法降低对流层O3;汾渭平原NOx减排可有效降低城市高排放区NO2,乡村地区受NOx自然源影响较大,人为减排收效不明显.  相似文献   

15.
基于利用AMDAR数据确定大气混合层高度进而对飞机不同工作状态下的时间进行修正的计算方法,核算了2017年华北地区6座典型机场大气污染物排放量.结果显示,6座机场NOx、CO、VOC、SO2与PM2.5的排放总量分别为21504.2,7074.8,1424.0,1283.6和323.2t.飞机源NOx、CO、VOC与SO2的排放量远高于机场内其他污染源,而对PM2.5的排放贡献相差较小.HC与CO的排放主要集中在滑行阶段,占比分别为90.6%与90.2%,而NOx、SO2与PM2.5的排放主要集中在爬升阶段,排放占比分别为58.9%、38.7%和43.5%.6座机场1月份污染物排放量较低,在8月份达到峰值.基于本研究建立的天津滨海国际机场大气污染物排放清单,利用WRF-CAMQ模型研究机场排放对周边区域PM2.5浓度的影响.结果表明机场区域小时最大贡献浓度为3.24μg/m3;距离机场5km处的年均贡献浓度与小时最大贡献浓度分别为0.08和2.84μg/m3.  相似文献   

16.
基于高分辨率的TROPOMI数据,分析了我国疫情爆发期的NO2空间分布情况,同时对比了疫情同比期和环比期不同地区的变化情况.分析表明,全国范围内NO2柱浓度的同比下降率和环比下降率分别为40.46%和50.09%,经济发达且人口稠密的城市群,排放量下降较为显著,其中江苏、河南、山东、浙江等NO2历史排放较高的省份受疫情影响更大.湖北省疫情期的NO2柱浓度绝对值(1.63×1015molec/cm2)在中东部省份属于最低位水平,同比和环比下降率也均在50%以上.相对来说,武汉、孝感等周边城市的影响远大于十堰、恩施等西部山区.地基国控站点的NO2质量浓度也显示了与卫星观测较一致的空间分布和变化趋势,证明了采用“自上而下”的遥感手段,可以对不同区域的大气污染排放强度和社会经济活动水平进行快速评估.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号