首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 338 毫秒
1.
泰安市大气臭氧污染特征及敏感性分析   总被引:1,自引:0,他引:1  
李凯  刘敏  梅如波 《环境科学》2020,41(8):3539-3546
2018年5~7月对泰安市城区站点的臭氧及前体物进行在线监测,并基于特征比值法和光化学模型分析了臭氧及前体物的污染特征及臭氧生成对前体物的敏感性.结果表明,观测期间泰安市正遭受较为严重的臭氧(O3)污染,臭氧浓度的日变化呈典型的单峰型变化,15:00左右出现最高值,氮氧化物(NOx)和VOCs的日变化趋势整体呈现夜间高白天低的变化特征.由O3生成效率(OPE)、VOCs/NOx和H2O2/NOz特征比值法及基于EKMA曲线的方法均得出观测期间泰安市大气O3光化学生成偏向于NOx敏感区及过渡区,削减NOx和VOCs均对O3生成具有控制作用.同时基于EKMA曲线的方法还得出在O3前体物浓度减排时按照丙烯等效浓度(PE)与NOx浓度比值为8∶3进行VOCs(PE)和NOx削减可以达到O  相似文献   

2.
利用MCCM(多尺度气象空气质量模式)对京津冀地区2008年6月严重光化学污染时段的近地面φ(NOx)和φ(O3)进行了模拟;同时,为了检验MCCM系统模拟φ(O3)时空分布的能力,将模拟的气象要素、φ(NOx)和φ(O3)与观测数据进行了比对,并利用验证后的模拟结果对该地区严重光化学污染时段O3时空分布特征进行研究. 结果表明:①MCCM模式可较好地反映气象场和污染物浓度场的时空分布特征. 气温、露点温度和气压的观测值与模拟值的相关系数分别为0.85、0.77和0.95;模拟的化学物种浓度的时空分布与观测结果基本相符. ②城市中心地区φ(NOx)较高,北京和天津城市地区的φ(NOx)甚至超过了30×10-9;京津冀平原大部分地区午后14:00φ(O3)的最大值超过了70×10-9;而太行山沿线φ(O3)的最大值超过了80×10-9. 结合气象要素的分析表明,午后φ(O3)在太行山沿线的高值与气压场和流场关系密切. ③利用判断O3生成敏感性指标——H2O2/HNO3(体积分数比)分析发现,φ(O3)日最大值和φ(总氧化剂)(总氧化剂=NO2+O3)平均值的高值区域与O3生成受NOx和VOCs协同控制的区域极为吻合. 因此,要达到降低区域的光化学污染,应以VOCs的消减为主,同时兼顾NOx的消减.   相似文献   

3.
朱禹寰  陈冰  张雅铷  刘晓  李光耀  舍静  陈强 《环境科学》2023,44(7):3669-3675
准确判断臭氧(O3)生成敏感性对O3污染成因分析和防控对策的制定至关重要.首次利用响应曲面方法设计最优试验方案,基于盒子模式模拟结果,快速量化O3对其前体物变化的响应.结果表明,CO对O3有正贡献,NOx和VOCs与O3呈现显著非线性关系,当φ(VOCs)与[φ(NOx)-13.75]比值大于4.17时,为NOx控制区,小于4.17时,为VOCs控制区;烯烃为影响O3生成的关键VOCs组分,当φ(烯烃)与[φ(NOx)-15]比值小于1.10且φ(烯烃)<35×10-9时,烯烃有利于O3的生成.响应曲面法在多因素和其交互作用对O3生成影响的研究中取得了良好效果,为高效判断O3敏感性提供了新的思路和方法.  相似文献   

4.
为深入探究典型热带海滨城市环境空气臭氧(O3)污染特征与成因,于2019年6~10月在海南省海口市城区站点开展O3及其前体物观测实验,较为全面地分析了O3污染特征,基于观测的模型(OBM)识别了O3生成控制区,分析了O3前体物敏感性,并开展了O3前体物减排效果评估.结果表明:(1)海口市O3污染主要出现在9月和10月,观测期间O3日最大8h滑动平均值范围为39~190μg·m-3,O3日变化呈单峰型,于14:00左右达到峰值.(2)海口市超标日NOx和VOCs浓度高于达标日,前体物浓度的升高是导致O3污染的内在因素,同时O3污染受区域传输影响,污染物主要来自于海口市东北部地区.(3)海口市O3生成处于VOCs和NOx协同控制区.9~10月O3  相似文献   

5.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

6.
基于O3生成敏感性的指示剂法,利用OMI对流层柱浓度HCHO/NO2分析夏季O3敏感性.O3控制区空间分布特征分析结果表明,O3生成受VOCs排放控制的地区主要集中在北京、太原、石家庄等城市中心及工业较发达地区,受NOx排放控制的地区主要集中在北京北部、河北北部、河南大部分地区、山东沿海城市,其他区域为NOx-VOCs协同控制区.分析2005~2016年间京津冀及周边地区O3生成敏感性的年纪变化特征表明,受VOCs控制的区域面积呈现先增大后减少,受NOx控制的区域呈先减少后增加的趋势.NOx控制区在2011年出现“拐点”,NOx控制区面积占研究区域面积的比例达到最低38%.2011年之后NOx排放量下降,NOx控制区面积逐步增大,2016年NOx控制区占比达到65%,VOCs控制区占比降低为3%.分析2005~2016年6~9月份O3控制区月变化特征发现,相比6~8月份,9月份VOCs控制区增加显著,这是由于6~8月份的NOx控制区转变为NOx-VOCs协同控制区,NOx-VOCs协同控制区向VOCs控制区转变.  相似文献   

7.
2019年7月石家庄市O3生成敏感性及控制策略解析   总被引:1,自引:1,他引:0  
基于石家庄市2019年7月近地面污染物和气象观测数据,分析夏季O3污染状况及其影响因素;结合WRF-CMAQ模式和O3浓度等值线(EKMA曲线),探究不同区域O3-VOCs-NOx的非线性响应关系,旨在探究最佳的前体物减排方案.结果表明,观测期间,石家庄市市区MDA8 O3超标率高达70.9%.污染天期间,伴随着高温、低湿、小风,且以南风和东南风为主.石家庄市市区属于VOCs控制区,郊县为NOx和VOCs协同控制区.在臭氧污染时段,市区在仅削减NOx排放,且削减比例超过50%时,持续减排NOx使得O3浓度呈逐渐下降趋势.在非臭氧日时段,市区在VOCs和NOx的削减比例大于1倍时,O3浓度才不会出现反弹.对于市区应考虑以仅削减VOCs为先;对于郊县区域而言,不同的NOx和VOCs削减比例下,O3浓度均会下降...  相似文献   

8.
郑新梅  胡崑  王鸣  谢放尖  王艳 《环境科学》2023,44(8):4231-4240
作为中国最重要的城市群之一,近年来长江三角洲(YRD)地区大气臭氧(O3)污染问题突出.于2020年7~9月和2021年4~5月在南京市南部地区溧水站点开展了大气O3、氮氧化物(NOx)和挥发性有机物(VOCs)等污染物的在线观测.在此基础上分析了溧水站点O3的污染特征并与城区站点进行比较,发现溧水站点O3污染较城区站点更加严重.在观测期间选择了3次典型的O3污染过程,分别为2020年8月16~27日、 2020年9月3~11日和2021年5月17~25日.利用基于观测的模型(OBM)分析了这3次污染过程的O3-VOCs-NOx敏感性.基于OBM所模拟的O3前体物相对增量反应性(RIR)和NOx和VOCs削减情景下O3生成等值线(EKMA曲线)结果显示,3次污染过程中O3-VOCs-NOx敏感性分别处于N...  相似文献   

9.
天津武清地区夏季臭氧光化学研究   总被引:4,自引:6,他引:4  
利用2006年8月10日—9月18日的监测数据,分析天津市武清区光化学污染特征. 结果表明:监测期间φ(O3)的小时均值累积共有26 h超标,超标率为2.7%;光化学污染发生时,ρ(NOx)和挥发性有机物(VOCs)的反应活性都有所升高,其中ρ(NO2)平均约升高了20 μg/m3, VOCs的反应活性增加了42%,但是臭氧对于ρ(NOx)的增加更加敏感. 计算VOCs等效丙烯浓度,发现邻二甲苯的臭氧生成潜势最高. 烯烃的光化学反应活性最强,其次是单环芳烃和烷烃.   相似文献   

10.
福建省莆田市作为典型的海滨城市,自2015年以来以O3为首要污染物的天数逐年增加.为了制定科学有效的减排措施,减轻莆田市的O3污染,以2016年莆田市O3污染高发的7—9月为研究时段,通过观测数据分析、空气质量模型敏感性分析和O3来源追踪方法分析了莆田市近地面O3生成控制区,以及O3及其生成前体物NOx与VOCs的区域和行业来源.结果表明:①莆田市西部地区为NOx控制区,而东部沿海地区则为VOCs控制区.②莆田市ρ(NOx)与ρ(VOCs)主要来自本地排放贡献,二者本地排放的贡献率分别为69.4%与64.2%,而本地排放对莆田市ρ(O3)的贡献率仅为21.0%,福建省福州市和泉州市对莆田市ρ(O3)的贡献率之和为37.6%,外来输送贡献率较大的为浙江省,其贡献率为11.6%.莆田市O3的外来输送不仅发生在ρ(O3)较高的时段,在ρ(O3)较低的时段也占了很大的比例.③莆田市工业源对本地排放ρ(O3)贡献率最大,达57%,其次是机动车源.④通过敏感性时间序列分析得出,同时削减10%的NOx和VOCs排放,能使莆田市国控点位平均ρ(O3)峰值下降约5 μg/m3.研究显示,莆田市NOx与VOCs主要来自本地排放,O3受外来输送影响较大,推进本地工业NOx和VOCs污染的治理与加强机动车尾气的污染控制是减轻本地O3污染的有效方法.   相似文献   

11.
王逸豪  张宇  雷宇 《环境科学研究》2023,36(6):1072-1082
O3污染的防治需要在分析O3人群暴露风险特征的基础上,对前体物的减排路径进行优化.长三角地区是我国O3浓度高、暴露风险大、前体物排放集中的地区之一,其减排路径的优化分析对于全国而言具有借鉴意义.本文以GB 3095—2012《环境空气质量标准》中O3浓度二级标准限值(160μg/m3)为目标,基于长三角地区的人群暴露风险探讨了不同减排路径下的O3污染控制效果.首先,运用WRF-CAMx模型,依据不同的NOx和VOCs减排率模拟了121种减排情景作为基础数据集,引入响应曲面模型(RSM)来划分长三角地区不同城市的控制区类型,并结合人口暴露风险指数来评价O3暴露的风险程度,将中高暴露风险地区与控制区耦合,设置HN区(NOx控制区中的O3暴露中高风险城市)和HV区(VOCs控制区中的O3暴露中高风险城市);其次,设置了7条不同的NOx  相似文献   

12.
为探究黄河三角洲代表性城市东营市夏季环境空气臭氧(O3)污染成因,利用2021年6月东营市大气超级站监测数据与基于观测的化学盒子模型(OBM),较为全面地分析了O3污染特征与O3生成敏感性机制,并开展了前体物减排效果评估. 结果表明:①2021年6月东营市O3污染较严重,O3污染天〔日最大8 h平均O3浓度值(MDA8-O3)≥160 μg/m3〕占比达50.0%,MDA8-O3、挥发性有机物(VOCs)和氮氧化物(NOx)浓度平均值较非污染天分别升高70.0%、10.4%和7.6%. ②O3污染天呈高温、低湿的特点,O3浓度与温度的相关性在污染天显著增强. ③基于本地化的O3生成潜势计算表明,与非污染天相比,污染天异戊二烯、乙烯和甲苯对O3生成潜势的贡献分别增加了114.3%、68.6%和38.2%. ④污染天O3本地净生成速率明显升高. O3生成处于VOCs-NOx协同控制区,减少VOCs和NOx排放均可有效降低O3生成. 研究显示,现阶段东营市应实施VOCs/NOx协同减排比例大于或等于1∶1的减排策略,污染天(尤其是夜间)应加大NOx及VOCs减排力度,减轻污染天温度升高及植物源排放增加等不可控因素对O3污染的影响.   相似文献   

13.
杭州湾北岸上海段石化集中区臭氧重污染过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾O3污染的形成机制,采用在线监测系统对杭州湾北岸上海段石化集中区O3及其前体物开展了为期1个月(2019年5月)的同步连续观测.采用OZIPR(臭氧等值线研究)模型分析O3生成的敏感性.在O3重度污染期间,利用PMF(正定矩阵因子分解)模型对O3前体物——VOCs进行源解析,采用臭氧生成潜势及气团老化分别估算了VOCs的反应活性和化学消耗.结果表明:①2019年5月杭州湾北岸上海段石化集中区O3的IAQI(空气质量分指数)优良率仅为61.3%,ρ(O3)第90%分位值为173.0 μg/m3.5月22日、23日发生重度O3污染,O3日最大8 h滑动平均值分别为(284.4±19.2)(282.0±14.2)μg/m3,分别超过GB 3095—2012《环境空气质量标准》二级标准限值(160 μg/m3)的77.75%和76.25%.②O3的生成受VOCs控制,降低VOCs的排放可在一定程度上降低O3的生成,降低NOx的排放反而会促进O3的生成.③O3重度污染期间,VOCs主要来自化工区排放(72.35%)和机动车尾气排放(27.65%).④O3重度污染期间,烯烃、炔烃及芳香烃对O3生成的贡献率之和在80.00%以上,其中丙烯、乙烯和甲苯的贡献率分别为29.97%、15.60%和14.16%;芳香烃及烯烃和炔烃是最主要的VOCs化学消耗物种,其中φ(丙烯)、φ(乙烯)和φ(1,2,4-三甲苯)的消耗量分别为13.57×10-9、4.93×10-9和3.55×10-9.研究显示,杭州湾北岸上海段5月O3的生成受化工区影响显著,丙烯与乙烯是O3重污染期间关键的O3前体物.   相似文献   

14.
采用来源解析的方法对2020年成都市发生的一次较为严重的臭氧污染事件进行了研究.结果表明,此次污染过程呈现从清洁-污染-清洁的变化趋势,污染持续时间长达9d,最大臭氧小时浓度达到258.8μg/m3.气象因素在成都臭氧污染中的影响不可忽略,其中温度与臭氧浓度呈现显著正相关关系,东北风主要出现在污染前和污染后,可能起到稀...  相似文献   

15.
姜华  常宏咪 《环境科学研究》2021,34(7):1576-1582
为揭示我国近地面臭氧的污染特征,甄别导致高浓度臭氧形成的关键影响因素,该文在探究我国重点区域近年来O3污染特征的基础上,对O3污染成因进行了初步分析.结果表明:①近年来我国O3污染呈缓慢上升态势,2019年夏季异常高温、干旱的极端天气导致O3污染偏重.京津冀及周边地区等重点区域O3浓度明显高于欧美等发达国家和地区.②从时间上看,我国O3污染主要出现在夏季及其前后,O3浓度峰值一般出现在午后.从空间上看,O3污染主要集中在京津冀及周边、汾渭平原和苏皖鲁豫交界地区,其次是长三角和珠三角区域,成渝和长江中游地区O3污染也逐渐凸显.我国O3污染程度主要以轻度污染为主,重点区域O3和PM2.5污染时空分异性特征明显.③前体物方面,我国NOx和人为源VOCs的排放量总体处于高位,京津冀及周边地区和长三角为全国NOx和VOCs排放强度较大的区域.近地表大气O3形成机理复杂,O3浓度与前体物VOCs和NOx均呈复杂的非线性响应关系.气候变化和气象因素对O3污染影响显著,O3及其前体物在区域和城市之间存在相互输送影响.研究显示,我国臭氧污染形势严峻,未来针对臭氧污染防控应加强对多时空尺度下不同区域臭氧污染的形成机理与主导因素的研究.   相似文献   

16.
春季是长三角地区对流层O3污染的高峰期之一,高浓度的O3暴露会影响冬小麦生长导致减产.利用长三角地区各城市2014年春季逐时ρ(O3)观测数据,研究了长三角地区春季O3污染特征,并结合O3暴露指数(M7指数和AOT40指数)和剂量-响应关系模型,详细评估了长三角地区O3污染对冬小麦产量的影响.结果表明:长三角地区春季ρ(O3)空间上总体呈南低北高的分布,长三角地区北部江苏和上海的ρ(O3)明显高于南部的浙江地区,在浙江北部、江苏和上海等地区,整个春季日最大8 h ρ(O3)平均值超过107 μg/m3,最高值出现在5月,超过128 μg/m3;一半以上的城市ρ(O3)超标[超过GB 3095-2012《环境空气质量标准》中8 h滑动平均ρ(O3)的二级标准限值(160 μg/m3)]日数在10 d以上,其中南京和扬州超标日数最多,分别为27和20 d;相应地,O3暴露指数也呈南低北高的分布,其中苏北地区O3暴露指数最高,导致长三角地区平均冬小麦相对损失达5.7%(M7)~25.5%(AOT40),造成的产量损失为7.85×105 t(M7)~4.49×106 t(AOT40),其中,苏北地区为5.8%(M7)~25.9%(AOT40),造成的产量损失为6.77×105 t(M7)~3.86×106 t(AOT40),占长三角地区冬小麦产量损失的86%以上.研究显示,当前长三角地区O3污染及其对冬小麦产量的影响已相当严重,特别是对苏北地区,而苏北地区是我国重要的冬小麦产地之一,因此,应当科学有效地治理O3污染以缓解粮食安全问题.   相似文献   

17.
由于大气是一个复杂介质,低层大气中湍流的存在使物质和能量的交换很剧烈,污染物的扩散传输现象明显.对不同高度不同区域的低层大气做立体观测,获取气态污染物浓度分布最直接的资料很有必要.综合利用地面观测站点、系留气球和飞机平台,于2016年11月25—26日在天津武清高村一次污染天气条件下对NOx和O3进行立体观测,得到了污染物的地面、垂直和低空区域分布特征,并结合气象因子进行分析研究.观测结果表明,地面$\varphi $(NOx)水平较高,日均值为230×10-9,超过了GB 3095—2012《环境空气质量标准》二级标准的限值,反映了高村冬季较高的污染水平,主要受当地交通源排放的影响.$\varphi $(NOx)随高度的上升呈下降趋势,受风速的影响明显,主要积聚在逆温层以下.低空$\varphi $(NOx)市区高于郊区,而处于更远郊区的高村$\varphi $(NOx)与市区相当,也反映了高村本地较高的NOx污染.高村地面$\varphi $(O3)低,日最大8 h平均值为8×10-9,反映了冬季低温辐射弱、光化学反应强度低的特点.随高度增加$\varphi $(O3)呈上升趋势,垂直分布特征主要与温度层结有关.低空$\varphi $(O3)呈郊区高于市区,高村(远郊区)高于近郊区的特征.研究显示,$\varphi $(NOx)的升高导致$\varphi $(O3)下降,这可能与高村冬季的$\varphi $(VOCs)/$\varphi $(NOx)偏低有关,需要结合VOCs观测数据做进一步分析.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号