首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

2.
不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性   总被引:1,自引:0,他引:1  
戴亮  任珺  陶玲  陈琛 《环境工程学报》2017,11(7):4029-4035
以市政污泥为原料,在300、500和700 ℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd2+的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在 700 ℃下制备的污泥基生物炭对水溶液中Cd2+的吸附效果优于其他制备温度下获得的生物炭,温度为 298.15 K 时,最大吸附容量为27.47 mg·g-1。污泥基生物炭对Cd2+的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd2+的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd2+的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

3.
以污泥为原料,硫酸钙为添加剂,采用热解法制备了硫酸钙/污泥基生物炭,考察了硫酸钙添加量、热解温度、升温速率及保温时间对生物炭中Pb、Ni形态分布的影响,并利用生态风险评价指数(RAC)对优化热解条件下制备的硫酸钙/污泥基生物炭中的Pb、Ni进行了生态风险评价。结果显示,优化热解条件为:硫酸钙添加量2.5%(质量分数)、热解温度750℃、升温速率2℃/min、保温时间15min。该优化热解条件下制备的硫酸钙/污泥基生物炭中的重金属Pb、Ni的生态风险分别为无风险、低风险,相对于污泥(低风险、中等风险)明显降低。  相似文献   

4.
热解温度和时间对生物干化污泥生物炭性质的影响   总被引:5,自引:0,他引:5  
污泥热解制备生物炭是一种很有潜力的污泥资源化处置方式,然而,生物炭产量和品质因污泥原料性质、热解条件(如热解温度、时间)的不同而存在显著差异。以生物干化污泥为主要研究对象,系统考察了热解温度及时间等热解因素对生物炭品质的影响。实验结果表明,随着热解温度的升高(300~700℃),热解时间的增加(2~4 h),生物炭产率均下降。低温热解(300℃)生物炭,偏酸性,而高温热解时(700℃)生物炭,偏碱性。生物炭N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提结果表明,高温热解明显降低了生物炭中微量元素的生物有效性。  相似文献   

5.
以城市生活污水厂脱水污泥和木屑的混合物为原料,利用ZnCl_2为活化剂制备污泥活性炭。研究了活化温度、活化时间、固液比和活化剂浓度对吸附性能的影响。在活化温度为650℃、活化时间30 min、固液比1∶1.5、活化剂浓度为5 mol·L~(-1)的最佳工艺条件下,制备得到的活性炭碘吸附值为584.85 mg·g~(-1),利用扫描电镜可以观察到其发达的孔隙结构。将制备的污泥活性炭应用于兰炭废水处理中,结果表明,污泥活性炭的投加量为180 g·L~(-1),pH为7,吸附时间60min,挥发酚和氨氮的去除率分别为73.38%和48.27%,废水中污染物浓度明显降低。  相似文献   

6.
邓潇  周航  陈珊  陈齐  彭佩钦  廖柏寒  张平 《环境工程学报》2016,10(11):6325-6331
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd2+的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd2+吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd2+浓度为100 mg·L-1,温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L-1条件下,改性玉米秸秆炭和花生壳炭对Cd2+的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd2+后,可用NaOH溶液进行解吸,解吸4次后,对Cd2+仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g-1。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd2+的吸附材料。  相似文献   

7.
污泥和茶渣都是典型的固体废弃物。将污泥和茶渣制备成生物炭,采用响应面分析(RSM)的方法优化生物炭的制备过程,主要考察温度、茶渣污泥配比和停留时间的影响,以得率和碘值作为评价生物炭的指标。结果表明:影响污泥-茶渣生物炭得率和吸附碘值的因素次序是:制备温度 > 配比 > 停留时间,温度和时间的交互影响较为明显。生物炭制备优化的条件是:制备温度为300℃,配比为0.7,停留时间为1.8 h,模型预测的得率和碘值分别是54.47%和624.07 mg·g-1,而实际测定的得率和碘值分别(53.50±0.50)%和(605.72±8.62)mg·g-1,生物炭有作为吸附剂的潜力。可见,RSM方法用于优化污泥-茶渣生物炭的制备是可行和合适的。  相似文献   

8.
利用Fenton活化法活化脱水污泥制备活性炭,研究了Fenton试剂投加量、活化时间、炭化温度、炭化时间和升温速率5种因素对制备污泥炭的影响。污泥炭的最佳制备工艺:Fenton试剂投加量为150 mL,活化时间为2.5 h,炭化温度为350℃,炭化时间为1 h,升温速率为20℃·min-1。污泥炭碘吸附值达到331.90 mg·g-1,BET比表面积为24.265 m2·g-1。总孔容为0.146 cm3·g-1,微孔率为17%。分析了吸附时间、pH值和吸附温度3种因素对污泥炭吸附水中Cr(Ⅵ)的影响。在吸附时间为90 min,pH=3,吸附温度为50℃时,污泥炭对Cr(Ⅵ)的吸附量为9.93 mg·g-1。吸附动力学符合准二级动力学模型描述,吸附过程符合Langmuir和Tempkin等温吸附模型描述。  相似文献   

9.
生物炭对土壤吸附邻苯二甲酸二乙酯的影响   总被引:1,自引:0,他引:1  
周震峰  徐良 《环境工程学报》2017,11(9):5267-5274
选择花生壳为原材料,采用限氧升温法在450、700℃温度下分别热解2、4、6 h制备6种生物炭,在对其表面性质和元素组成进行分析的基础上,重点考察生物炭对土壤吸附邻苯二甲酸二乙酯(diethyl phthalate,DEP)的影响。结果表明:生物炭的比表面积和总孔体积随着热解温度的升高而增加,热解时间的延长也会提高比表面积和总孔体积,而4 h是较为适宜的热解时间;生物炭中元素组成主要受热解温度的影响,热解时间的作用很小,热解温度的升高使生物炭的芳香性增强,极性降低;添加生物炭能显著提高土壤对DEP的吸附能力;Langmuir模型和Freundlich模型均能较好地拟合添加生物炭土壤对DEP的吸附特征;在不同的平衡浓度条件下,生物炭对土壤吸附DEP的贡献率介于82.07%~99.49%之间,表明生物炭对土壤中DEP的吸附发挥着主导作用。相关分析发现,吸附参数ΔKoc与生物炭的比表面积和总孔体积具有显著相关性,提高比表面积和改善孔隙结构可以增强生物炭对DEP的吸附能力。  相似文献   

10.
生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征   总被引:8,自引:0,他引:8  
选取花生壳和玉米秸秆为原材料,在不同温度下制备生物炭,与市售的银杉木炭一起作为吸附剂探究其对水溶液中Pb(Ⅱ)和Zn(Ⅱ)的吸附能力和特性。用FTIR和扫描电镜表征生物炭表面性质。实验考察了吸附时间、溶液初始pH、初始浓度对吸附的影响。结果表明,在室温25℃和pH 5.0条件下,生物炭对Pb(Ⅱ)、Zn(Ⅱ)的吸附量随时间的增加而增大,在24 h后基本达到平衡,并且生物炭对Pb(Ⅱ)、Zn(Ⅱ)的吸附动力学符合准二级动力学方程;溶液初始pH显著影响生物炭对Pb(Ⅱ)和Zn(Ⅱ)的吸附,其中对Pb(Ⅱ)和Zn(Ⅱ)的最佳吸附pH分别为5.0和6.0;花生壳生物炭和玉米秸秆生物炭对Pb(Ⅱ)的等温吸附符合Langmuir模型和Freundlich模型,而对Zn(Ⅱ)的等温吸附Freundlich模型拟合效果更佳;银杉木炭对Pb(Ⅱ)和Zn(Ⅱ)的等温吸附更适用于Langmuir模型。另外,随着生物炭制备时热解温度的升高,生物炭对Pb(Ⅱ)和Zn(Ⅱ)的吸附量增加,且各生物炭对Pb(Ⅱ)的最大吸附量远大于其对Zn(Ⅱ)的最大吸附量。不同生物炭对Pb(Ⅱ)的吸附能力有明显差异,表现为:花生壳生物炭玉米秸秆炭银杉木炭,而对Zn(Ⅱ)的吸附力差异不明显。  相似文献   

11.
以生物质混合压缩颗粒为原料,在600~900℃活化温度下,循环利用热解气制备活性炭,考察热解气的活化作用及活性炭对农药甲萘威的吸附性能。结果表明:热解气具有明显的活化作用,经过活化的炭与热解炭相比孔结构更加发达,表面更加粗糙;活化温度对活性炭理化性质具有显著影响,随温度升高,活性炭芳香性升高,极性降低,含氧官能团逐渐减少,比表面积由239.00 m~2·g~(-1)增加到629.20 m~2·g~(-1),平均孔径由5.438 nm减小至3.005 nm;Freundlich模型能够很好地拟合活性炭对甲萘威的吸附等温线,随活化温度升高,活性炭吸附能力增大;吸附动力学更符合伪二级反应动力学模型,60 h内基本实现吸附平衡;当活化温度为800℃,单位原料对甲萘威的吸附量最大。  相似文献   

12.
吴嘉煦  李凯  孙鑫  王盛  何莉莉  高红 《环境工程学报》2022,16(12):3884-3894
为实现市政污泥的无害化和资源化利用,以酒糟和市政污泥为原料热解制备酒糟污泥生物炭(LBCZ),采用共沉淀法将镧(La)负载到LBCZ表面制得La改性酒糟污泥生物炭(La-LBCZ),探究了改性剂浓度、La-LBCZ投加量、溶液初始pH和共存离子对La-LBCZ吸附磷的影响,使用SEM-EDS、BET、XRD、FTIR和XPS等表征手段分析了吸附机理。结果表明:改性剂浓度为0.1 mol·L−1时La-LBCZ对磷的吸附效果最好(吸附量为68.32 mg·g−1),为改性前的6倍;吸附过程符合准二级动力学模型和Langmuir模型,为单分子层表面的化学吸附。此外,生物炭孔隙结构不发达,La以氢氧化物形态负载到生物炭表面,络合反应是其主要的吸附机理。在吸附-脱附实验中,La-LBCZ经过5次循环后吸附量为61.2 mg·g−1,吸附率为87.79%,脱附量为52.65 mg·g−1,脱附率为75.52%,说明其具有良好的循环性能和磷回收性能。  相似文献   

13.
针对传统技术制备污泥活性炭的比表面积不高、吸附值低等不足,通过在污泥中添加核桃壳以改善污泥原料缺陷,研究了活化剂种类、核桃壳加量、活化温度、活化时间、活化剂浓度及浸渍比等影响活性炭吸附能力的制备条件。在优化后的条件下制备出了高吸附性能的生物质污泥复合活性炭。结果表明:选择氯化锌作为活化剂,核桃壳加量20%、活化温度500℃、活化时间60 min、活化剂浓度2.5 mol·L-1、浸渍比1∶2.5为最优化制备条件。制备出的生物质污泥复合活性炭碘吸附值为574.11 mg·g-1,产率为43.93%。  相似文献   

14.
脱水污泥制备含炭吸附剂及其应用研究   总被引:1,自引:0,他引:1  
采用热解炭化法、物理活化法、化学活化法制备污泥含炭吸附剂,通过静态吸附实验研究各种影响污泥含炭吸附剂吸附性能的因素.实验结果表明,采用化学活化法制得的污泥含炭吸附剂吸附性能最好,在以ZnCl2为活化剂、锯末添加剂投加量为脱水污泥质量的1%、ZnCl2为3 mol/L、活化温度为450 ℃、活化时间为1.5 h、固液质量比(干污泥与活化剂溶液的质量比)为1:4的最佳制备条件下,制得的污泥含炭吸附剂碘吸附值在520 mg/g以上,产物收率>60%,比表面积>230 m2/g,总孔容积为0.35 mL/g,其中微孔容积为0.08 mL/g,中孔容积为0.23 mL/g.利用其处理城市污水,其对COD、色度、TP的去除率好于选定的商品颗粒活性炭.  相似文献   

15.
以石化企业在污水处理过程中产生的干化剩余污泥为原料,大同烟煤作辅助添加料,采用化学活化法制备污泥-烟煤基活性炭,探讨了活化剂(ZnCl2)用量、活化温度、活化时间等条件对所制备的活性炭性能的影响。以活性炭的碘吸附值为衡量指标,当污泥:烟煤(质量比)=1:1时获得制备污泥-烟煤活性炭的最佳工艺条件为:浸渍液为ZnCl2:原料(质量比)=2:1,活化温度550℃,活化时间30 min,在该条件下制备的活性炭的碘吸附值为990 mg·g-1,比表面积为836 m2·g-1,产率为46.6%。同时,以苯酚为目标污染物,考察了所制备的污泥-烟煤基活性炭对苯酚的去除效果,结果表明:污泥-烟煤基活性炭投加量为2.0 g·L-1时,4 h后达到吸附平衡,离子强度对吸附容量没有显著的影响,溶液pH在4~10范围内对苯酚有较好吸附,pH=6时苯酚吸附容量为138.9 mg·g-1。与同类吸附剂相比,制备的污泥-烟煤基活性炭可高效吸附水溶液中的苯酚。  相似文献   

16.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb2+、Cd2+浓度下污泥生物炭对Pb2+、Cd2+的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb2+、Cd2+的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb2+的吸附量最大,而Cd2+在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb2+、Cd2+的吸附量为RC500 > RC400 > RC300,RC500的饱和吸附量分别为Pb2+(14.39 mg·g-1)>Cd2+(1.45 mg·g-1),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

17.
以生物质二层牛皮为原料,在控制热分解条件下制备了生物质基炭膜。利用TG/DTG、XRD、FT-IR、SEM、TEM和低温N_2吸附-脱附等方法对在不同炭化温度下(550~950℃)制备的生物质基炭膜形貌特征、孔隙结构及其表面化学性质进行了表征。考察了炭化温度、反应时间、溶液pH、加入量等因素对炭膜吸附溶液中铅离子的影响。表征结果表明:随着炭化温度的升高,生物质基炭膜碳微晶趋于石墨化发展,总孔容积持续增大,孔隙结构变得更加发达。实验结果表明:随炭化温度升高,生物质基炭膜对铅离子的吸附效果明显变好;在初始铅离子质量浓度为50 mg·L~(-1)、溶液pH为5.5、吸附剂加入量为1.5 g·L~(-1)、吸附时间为6 h的条件下,950℃下所制炭膜对铅离子有较好去除效果,去除率可达99.9%,吸附容量为32.76 mg·g~(-1)。  相似文献   

18.
以秸秆为原料,磷酸为活化剂制备改性生物炭,利用基于Box-Behnken中心组合的响应面法对生物炭制备条件进行优化。根据响应面分析,热解温度、保留时间和磷酸质量分数对生物炭的吸附性能有显著影响,浸渍比影响不显著;保留时间与浸渍比、磷酸质量分数与浸渍比的交互作用对生物炭吸附能力也有显著影响。根据响应面法获得生物炭制备的最优条件为:热解温度884.32℃、保留时间82.61min、磷酸质量浓度40.74%、浸渍比1.74,此时生物炭最大碘吸附预测值为1 099mg/g,与验证实验实测结果(1 063mg/g)仅相差3.28%,表明响应面回归模型预测结果可靠。响应面法优化后制得的生物炭具有更高比表面积与总孔容,因此具有更高的吸附性能。  相似文献   

19.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

20.
为了考察以牛粪为原料制备的生物炭对水溶液中Cd2+的吸附效果,进行了吸附影响因素、吸附等温线和动力学研究。结果表明,当热解温度为700℃、投加量为20 g/L、溶液初始pH为5、水溶液Cd2+初始浓度为10 mg/L、吸附平衡时间为60 min和溶液温度为25℃时,对Cd2+的吸附效果最佳,Cd2+去除率可达99%以上。提高溶液温度有利于吸附。降低生物炭热解温度和投加量对吸附效果影响不大。Langmuir方程能更好地拟合生物炭对Cd2+的吸附等温过程,吸附过程符合准二级动力学方程。牛粪生物炭是性能优良、价格经济的水溶液中Cd2+的吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号