首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用介质阻挡放电技术对菲污染土壤进行修复处理,研究了电源参数(电压、频率、占空比、放电间隙)对输入能量的影响,考察了电源参数、土壤参数、气体参数对处理效果的影响,并综合考虑处理效果、放电特性及能源利用等因素选取最佳参数以进行后续处理及机理研究。结果表明:在电源输入电压为110 V、脉冲频率为150 Hz、占空比为20%、放电间隙为1.5 cm、气体流速为0.6 L·min-1、初始浓度为200 mg·kg-1、土壤含水率为4%的条件下处理20 min后,DBD等离子体对菲污染土壤的降解率可达到82%,其输入功率为64 W,能源效率为0.04 mg·k J-1。  相似文献   

2.
为研究介质阻挡放电(DBD)反应器结构对低温等离子体降解甲苯的影响,设计了具有单层介质和双层介质的DBD反应器。对2种反应器的放电特征、甲苯去除率、矿化率、CO2选择性和能量效率进行了比较,并对施加电压和初始浓度对甲苯降解效果的影响进行了分析。结果表明:在相同电压下,双介质反应器(DDBD)具有更高的电场强度,而单介质反应器(SDBD)的输入功率更高;当甲苯浓度和电压分别为616、1 027、1 848 mg·m−3和14~24 kV时,双介质中的甲苯去除率为9.4%~100%、7.4%~99%、5.1%~64%,单介质为67%~98%、46%~90%、26%~59%。这说明低电压下单介质反应器的甲苯去除率更高,而高电压下则相反,并且,浓度降低、电压升高有利于甲苯的降解。单介质反应器的能量效率随电压升高而降低,双介质反应器则先升高后下降,且双介质反应器的能量效率高于单介质反应器(16~24 kV)。以上研究可为介质阻挡放电在VOCs去除方面的应用提供参考。  相似文献   

3.
为解决喷漆和涂装废气中VOCs的污染,采用同轴圆管式介质阻挡反应器进行低温等离子体降解高浓度甲苯探索,研究了反应器参数(放电间距、放电长度)、操作参数(初始甲苯浓度、气体流量、输入功率)等关键参数对甲苯转化率和产物CO2选择性的影响。结果表明:放电间距过大或者过小都不利于甲苯的降解,放电长度的增加对其影响相对较小;输入功率越大,甲苯的降解效果越好,并且反应产物中臭氧的浓度越低,但气体流量及初始甲苯浓度的增加不利于甲苯的降解。最后对产物进行GC-MS检测,分析了甲苯降解机理。  相似文献   

4.
采用线圈式低温等离子体介质阻挡反应器降解CS_2,通过控制CS_2浓度、流量及放电电压等影响因素,探讨CS_2在氮气和模拟空气背景下的降解率。结果表明:模拟空气和氮气背景下,CS_2质量浓度为600mg/m~3,流量为0.30m~3/h,电压为5 000V时,CS_2的降解率分别为90.3%、68.9%。模拟空气背景下尾气成分主要包括SO_2、COS、CO_2、CO。参数控制在适当范围内,可以提高CS_2的降解率。  相似文献   

5.
介质阻挡放电处理甲苯及其放电参量的研究   总被引:1,自引:1,他引:0  
采用等离子体反应器介质阻挡放电产生低温等离子体处理甲苯,在分析负载等效电路的基础上,利用电压-电荷Lis-sajous图形法对气体放电过程中的放电参量进行测量研究,并探讨了相关工况参数对甲苯去除率的影响.研究结果表明,该反应器所得能量随着电压的增大而增大;气隙等效电容随着外加电压和气隙厚度的增大而减小;电压较低时.电介质等效电容变化不大,随着电压的增大迅速升高,当电压达到一定值后,电介质等效电容变化平缓;该反应器采用粗电极对甲苯的去除率优于细电极;甲苯的去除率随着放电功率的上升而提高,但是能量效率却呈降低的趋势.此外,研究发现甲苯的初始浓度与气体流量与甲苯的去除率呈反比,而与甲苯的绝对去除量呈正比.  相似文献   

6.
介质阻挡放电(DBD)等离子体技术可以有效地降解和矿化水中的亚甲基蓝(MB)分子。本文采用一种新型的双室DBD反应器通过处理亚甲基蓝溶液,研究了液体体积、下气室高度、输入功率、初始pH、初始浓度、曝气种类对MB降解的影响。结果表明,在液体体积50 mL、下气室高度7 mm、输入功率18 W、初始pH 4.0、初始浓度100 mg·L-1、氧气曝气时,MB可以在20 min内几乎脱色完全。并提出了MB的降解是脱甲基化、臭氧直接氧化和羟基化共同作用的结果。  相似文献   

7.
建立了介质阻挡放电等离子体(DBDP)和纳米氧化锌(ZnO)相协同的难降解有机物降解体系,以双酚A(bisphenol A, BPA)作为目标污染物,考察了协同体系中ZnO的不同添加浓度、不同载气种类、溶液不同初始pH对BPA降解效率及能量利用效率的影响,同时考察了在相同操作参数条件下,不同自由基捕获剂对BPA降解效果的影响规律,以说明不同活性氧物种在降解过程中的贡献情况,并测定了不同操作条件下溶液COD和UV-vis光谱的变化。结果表明:DBDP/ZnO协同体系中ZnO的最优添加浓度为50 mg·L−1,该操作条件下,反应40 min后,BPA的降解率为85.4%,能量利用率为0.32 g·(kWh)−1;当体系的初始pH为酸性、载气为氧气时,更利于BPA的降解;反应体系中·OH、 1O2、O2·及电子浓度的减少均会削弱BPA的降解效果;催化剂的添加和载氧气条件有利于提高BPA的可生化性。以上研究结果对拓宽金属氧化物材料及低温等离子体水处理技术的应用范围具有一定的参考价值。  相似文献   

8.
利用自制电晕-介质阻挡协同放电低温等离子体降解大流量甲苯废气,运用均匀设计法优化获得甲苯降解的适宜条件,探究了各因素及因素间交互作用对甲苯降解的影响,并开展甲苯降解动力学分析。结果表明:降解甲苯的最佳条件为工作电压13kV、放电频率6.5kHz、废气流量为1.0L/min,甲苯初始质量浓度924mg/m~3,在此条件下甲苯气体降解率为94.93%,能量效率为0.63g/(kW·h);甲苯降解符合一级反应动力学,甲苯降解反应速率常数与输入功率具有良好线性关系。  相似文献   

9.
介质阻挡放电(DBD)由于具有操作简单、安全可靠、反应快、电子能量高等优点成为低温等离子体研究的热点。综述了DBD单独作用、DBD-非催化剂填料以及DBD-催化剂协同技术在挥发性有机物(VOCs)处理方面的主要研究进展;讨论了温度、水蒸气含量、氧气含量、VOCs浓度、流量、放电功率等因素对DBD降解VOCs的影响;在此基础上,对DBD降解VOCs的研究前景进行了展望。  相似文献   

10.
电极尺寸对介质阻挡放电冷等离子体去除NO的影响   总被引:1,自引:0,他引:1  
设计了一套高压电源装置以及相应的同轴圆柱—简介质阻挡放电管,研究了放电管中心电极直径以及介质层管内径变化对放电冷等离子体去除NO的影响。实验结果表明,这2种电极尺寸的变化对NO去除率有显著的影响。中心电极直径的增加,有助于增强放电,但同时减小了反应空间;介质层管内径增加,延长停留时间的同时放电的强度却相应减弱了。所以中心电极的直径或介质层的内径均应有一最佳值,使得其他条件不变的情况下NO的去除效果最佳。  相似文献   

11.
为考察混合气体中各组分对VOCs降解的影响,以及催化剂在协同低温等离子体降解多组分VOCs气体中的表现,选取甲苯、丙酮及乙酸乙酯组成混合VOCs进行低温等离子体降解,进而研究混合降解方式对混合VOCs气体各组分降解效果的影响。先制备了Mn2O3/γ-Al2O3催化剂,采用催化剂后置方式研究催化剂在协同低温等离子体降解多组分混合VOCs气体过程中的表现。结果表明:多组分混合VOCs降解时,甲苯和乙酸乙酯的降解率相较单独降解时都有所提升,当特定输入能量(SIE)为700 J∙L−1时,提升率分别为69.1%和12.64%,而丙酮的降解率相较单独降解时却发生了明显下降,下降了40.74%;多组分混合VOCs降解时的臭氧产量相较3种VOCs单独降解时均有微弱下降;多组分混合VOCs相较单种VOCs降解时的碳平衡均略有下降;在协同低温等离子体降解多组分VOCs气体过程中,Mn2O3/γ-Al2O3催化剂对混合VOCs中甲苯、乙酸乙酯及丙酮降解率有明显提升,且随VOCs降解难度的上升而更加明显,并使得各条件下VOCs降解的碳平衡均得到了提升。本研究结果可为低温等离子体降解VOCs的实际应用提供参考。  相似文献   

12.
设计了一套高压电源装置以及相应的同轴圆柱 筒介质阻挡放电管 ,研究了放电管中心电极直径以及介质层管内径变化对放电冷等离子体去除NO的影响。实验结果表明 ,这 2种电极尺寸的变化对NO去除率有显著的影响。中心电极直径的增加 ,有助于增强放电 ,但同时减小了反应空间 ;介质层管内径增加 ,延长停留时间的同时放电的强度却相应减弱了。所以中心电极的直径或介质层的内径均应有一最佳值 ,使得其他条件不变的情况下NO的去除效果最佳。  相似文献   

13.
王小平  梅洁 《环境工程学报》2021,15(7):2305-2313
为了有效的降解生产废水中的四溴双酚S(TBBPS),采用泡膜式介质阻挡放电等离子体处理装置,研究了放电等离子体对TBBPS降解的影响。分别探讨了放电电压、空气流量、液体流量、活性物质抑制剂对TBBPS降解效果的影响;考察了降解过程中pH、电导率、COD和生物毒性的变化。结果表明,在放电电压为12.5 kV、空气流量为1.8 L·min−1、液体流量为150 mL·min−1时,处理9 min后其TBBPS去除率达到95 %以上;活性物质抑制剂对TBBPS的降解有一定的抑制作用,活性物质$ \cdot {\rm{O}}_2^ - $是反应体系中的主要活性物质;在降解过程中,pH不断下降,电导率不断上升,COD先升高后降低,生物毒性呈下降趋势。紫外-可见分光光度计全波扫描结果表明,TBBPS对应的特征吸收峰随处理时间变小,表明等离子体处理会破坏TBBPS的结构。以上研究结果可为TBBPS的有效降解提供参考。  相似文献   

14.
对介质阻挡等离子体放电产生臭氧以及臭氧氧化乙醛模拟废水(乙醛水)的过程特性进行了研究。纯氧的介质阻挡等离子放电产生含有一定臭氧浓度的氧气流,含臭氧的氧气流通入模拟乙醛废水中对乙醛进行臭氧氧化。研究发现,乙醛可以被臭氧深度氧化成CO和CO2,CO2的选择性为66%~80%。乙醛去除反应是臭氧浓度的一级反应和乙醛浓度的一级反应。臭氧氧化乙醛的能量效率随能量密度的增加而降低。研究还表明,如能循环使用未能和废水中的乙醛发生反应的臭氧有望降低臭氧处理废水的成本。  相似文献   

15.
低温等离子体技术处理挥发性有机物   总被引:10,自引:0,他引:10  
介绍了低温等离子体技术在处理挥发性有机物(VOCs)的研究现状和成果;探讨了低温等离子体技术的发展趋势.  相似文献   

16.
介绍了低温等离子体技术在处理挥发性有机物(VOCs)的研究现状和成果;探讨了低温等离子体技术的发展趋势.  相似文献   

17.
采用介质阻挡放电等离子体技术去除太湖水华蓝藻,考察了放电输出功率、空气流速、添加剂(异丙醇、腐植酸)等对蓝藻去除的影响。结果表明,介质阻挡放电能去除太湖水华蓝藻,放电功率100 W,空气流速1.0 L/min,放电18min,在光照强度2 000 lx和25℃下培养4 d,初始叶绿素a浓度为9.58 mg/L藻液中蓝藻去除率达87.8%。增加放电输出功率和空气流速能提高蓝藻的去除效率;腐植酸促进了介质阻挡放电对蓝藻的去除;而异丙醇添加剂抑制了介质阻挡放电的作用。放电处理后,蓝藻细胞内类胡萝卜素含量、SOD活性、MDA含量发生明显变化,介质阻挡放电破坏了蓝藻细胞内含物。  相似文献   

18.
介质阻挡放电联合催化臭氧化降解甲苯   总被引:2,自引:2,他引:2  
采用介质阻挡放电区后结合MnOx/Al2O3/发泡镍去除甲苯,考察甲苯进气方式、臭氧产生方法及湿度对甲苯与O3同时去除的影响。结果表明,O3是等离子体区后催化降解甲苯的主要物种,介质阻挡放电联合催化臭氧化可实现甲苯及O3的同时高效去除。输入电压为9.0 kV时,甲苯的去除效率达92.8%,在80 min内O3的去除效率维持在99%以上。水蒸气对催化剂催化分解臭氧的活性没有直接的影响,O3浓度较高时湿度对甲苯降解效率的影响很小。GC-MS分析结果表明,甲苯降解的主要气相副产物有烷烃、酸、酮和含苯环有机物,提出了甲苯的降解途径。  相似文献   

19.
利用自制等离子体反应器开展电晕-介质阻挡协同放电降解连续流丙酮研究,利用均匀设计法获得适宜的丙酮降解参数及其相互关联性,通过解析电晕-介质阻挡协同放电机理,结合丙酮降解热力学性能分析,获得影响丙酮降解的主要因素。结果表明:丙酮降解的适宜条件为反应器电压9.60 kV、空气流量1.4 L·min-1、在丙酮气体流量20 mL·min-1的连续流体系下,电晕-介质阻挡协同放电3 min、初始质量浓度为1.807 mg·L-1的丙酮单次循环降解率可达35.01%。解析等离子体放电过程和热力学性质发现,丙酮降解受协同放电活性粒子与反应温度的双重影响。  相似文献   

20.
研制了一种新型线-板式介质阻挡放电反应器。通过分析V-Q Lissajous图,得出了反应器放电过程的特征,以乙烯的降解率为指标,优化了反应器的结构,并考察了工艺参数(相对湿度、乙烯初始浓度和停留时间)变化对反应器性能的影响。实验结果表明,反应器放电时,输入功率的增加不会使放电电压增大,增加的是放电电流;优化后的反应器以2.5mm厚的陶瓷板做阻挡介质,以间距为0.5 mm的钼丝做电晕极,放电间距3 mm;乙烯的降解效率受湿度的影响小于10%,随初始浓度的增加或停留时间的减小而降低;最佳的工艺参数为湿度24%(298 K)、初始浓度17 mg·m~(-3)、停留时间1 s。与传统的平行板式反应器相比,该反应器起晕电压较低、能量效率较高,适于降解低浓度的乙烯气体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号