首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
首次构建了以生物质活性炭纤维笼电极为空气阴极的微生物燃料电池(biomass activated carbon fiber cageshaped air-cathode microbial fuel cell,BACFC-ACMFC),并以厌氧污泥接种,以葡萄糖作为碳源,研究了该MFC在连续运行条件下的产电性能、电池内阻情况和最优运行条件。结果表明:在一个运行周期内,该MFC最佳运行条件为:体积浸没比为50%、p H=8、污泥投加量为1.8 g·L-1。当外接电阻为1 000Ω时,该MFC最大输出电压为257.89 m V,最大输出功率密度为4 082.99 m W·m-3,电池内阻为419.88Ω,与目前其他阴极材料的微生物燃料电池相比,该新型生物质活性炭纤维笼空气阴极微生物燃料电池功率密度较高,内阻较低。SEM分析可知,阴极具有较大的比表面积和孔隙率,有利于与氧气的充分接触。在浸入溶液中的半面阴极上发现大量微生物附着,这可能和氧气还原有关。  相似文献   

2.
通过向阴极室投加接种污泥构建阴极功能型的微生物燃料电池(MFC),并用其强化降解对硝基苯酚(PNP),考察了MFC运行过程中电极液pH、电导率和温度等环境因子的变化,使用SPSS 13.0统计分析软件考察了各环境因子与MFC输出电压的相关关系,并对阴极生物膜样品采用高通量测序分析其菌群结构。结果表明,MFC输出电压与阳极室、阴极室pH均呈极显著相关关系,电极液pH为6时MFC对PNP的降解性能较优,PNP降解率为100.0%,还原降解中间产物对氨基苯酚(PAP)生成率为32.5%±2.5%,而pH为4时PNP降解率为80.1%±4.1%,PAP生成率为13.3%±2.2%;外接电阻为100Ω时,MFC对PNP降解性能优于外接电阻50、200Ω时。阴极优势菌群中,懒杆菌科(Ignavibacteriaceae)推动了系统电子的传递,而嗜氢菌目(Hydrogenophilales)、伯克霍尔德氏菌目(Burkholderiales)具有辅助还原降解PNP的作用。  相似文献   

3.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

4.
利用混合菌种(厌氧污泥)和单一菌种(Geobacter sulfurreducens)以不同接种方式搭建单室土壤微生物燃料电池(MFC)反应器,考察不同MFC的产电性能及其对Cd污染土壤的修复效果。结果表明,将混合菌种集中接种于阳极碳毡表面的MFC1运行效果最佳,其在2d即可完成启动,输出电压稳定在0.225V左右,最大功率密度为35.00MW/m2,内阻为515.5Ω。土壤修复效果与MFC产电性能相关,MFC1产电性能最佳,因此土壤修复效果最好,稳定运行30d后阴极Cd富集率最高,达19.02%  相似文献   

5.
为了降低构建微生物燃料电池(MFCs)的成本,比较了以碳毡和碳布作为阴极材料,在阴极利用功能微生物作为催化剂时电池的产电性能。结果表明,两电池启动时间基本相同,20 d左右达到稳定,但稳定期碳布作阴极的电池电压比碳毡作阴极的电池电压高出了60 mV左右。碳毡和碳布作阴极时,电池在10 d和20 d的最大功率密度分别由10.24和11.14 mW/m2提升到了18.18和30.15 mW/m2,相应内阻则分别由1 000和600Ω降到了250和200Ω。循环伏安法(CV)显示两材料单独做电极时氧化还原情况相似,扫描电镜(SEM)观察到两者不同表面特性导致碳毡对污泥附着强于碳布,进而使氧气传递受到限制,产电降低。  相似文献   

6.
构建了以乙酸钠为阳极基质、Cu~(2+)为阴极电子受体的双室微生物燃料电池(MFC),考察了该MFC处理含铜废水的效果及Cu~(2+)浓度对MFC产电性能的影响。通过改变阴极液中CuSO_4的质量浓度(20~130mg/L),测试了MFC运行过程中的输出电压、输出功率密度、内阻、Cu去除率等指标。结果表明:Cu~(2+)可作为MFC的阴极电子受体;在外电路电阻为1 000Ω的条件下,Cu~(2+)质量浓度为130mg/L的MFC性能最佳,其稳定输出电压为0.33V、最大输出功率密度为114.42mW/m~2,内阻为231.62Ω,最高Cu去除率为84.59%;通过X射线衍射测试发现,阴极还原产物为Cu_2O。  相似文献   

7.
厌氧氨氧化菌接种污泥的选择培养过程研究   总被引:9,自引:2,他引:9  
厌氧氨氧化菌的2种不同接种污泥培养实验表明,厌氧消化污泥和好氧硝化污泥均可成功启动厌氧氨氧化过程.接种厌氧消化污泥比好氧硝化污泥培养的厌氧氨氧化菌启动快,但后者去除效果较好.接种好氧硝化污泥的反应器的厌氧氨氧化速率随着氨氮基质进水浓度的增加呈线性增加.进水氨氮浓度为280 mg/L时的氨氮平均去除率达91%;而接种厌氧消化污泥的相应氨氮平均去除率仅为52%.厌氧氨氧化过程以接种好氧硝化污泥来启动为宜.  相似文献   

8.
设置3组不同阳极底物的微生物燃料电池(microbial fuel cell,MFC):无添加污泥(对照组)、含化学合成零价纳米铁的污泥(c-n ZVI组)和含绿色合成零价纳米铁的污泥(g-n ZVI组),拟探究不同来源零价纳米铁(n ZVI)对MFC启动的影响。3组MFC经由5个周期启动,实验结果表明,在c-n ZVI组和g-n ZVI组的启功阶段,高浓度的绿色合成零价纳米铁和化学合成零价纳米铁均对MFC的输出电压产生抑制作用,当MFC成功启动后,零价纳米铁对MFC的输出电压影响不明显。此外,COD去除率、SEM和电化学表征数据表明,绿色合成零价纳米铁相比于化学合成零价纳米铁在电极表面富集程度、对电极表面性质改变以及产电菌活性的抑制作用更弱。  相似文献   

9.
对混合菌接种的双室微生物燃料电池加载磁场强度为175 mT的稳恒磁场,利用电化学交流阻抗等电化学分析方法,考察了在磁场作用下微生物燃料电池(MFC)产电性能的变化,分析了磁场对MFC各部分内阻的影响。加载磁场使已启动完成的MFC的产电明显增强,开路电压提高了10%。加载磁场后最大功率密度为2.08 W/m2,大于加载前的1.58 W/m2,表观内阻由170Ω降至80Ω。电化学阻抗谱分析确定了阳极、阴极和全电池的等效电路模型,拟合结果发现阳极极化内阻约为5Ω。加载磁场使MFC的阴极极化内阻由74.98Ω降至56.73Ω。  相似文献   

10.
以厌氧污泥为接种菌源,醋酸钠为阳极基质,分别构建了铁氰化钾和过硫酸铵为电子受体的双室微生物燃料电池(MFC),并研究了MFC在不同电子受体下的产电性能。结果表明,以铁氰化钾和过硫酸铵为电子受体的MFC最大稳定输出电压均随着电子受体浓度的升高而增大。当铁氰化钾质量浓度大于2.0g/L时,MFC最大稳定输出电压增幅不大。两种MFC的内阻均随电子受体浓度的增大而降低。阴、阳极溶液体积相等,外阻为5 000Ω时,以10.0g/L过硫酸铵为电子受体,MFC最大开路电压和最大输出功率密度分别为1 029.0mV和385mW/m3;以10.0g/L铁氰化钾作为电子受体,MFC最大开路电压和最大输出功率密度分别为711.8mV和73mW/m3,均小于以过硫酸铵为电子受体的最大开路电压和最大输出功率密度。因此,过硫酸铵是一种理想的电子受体,能够提高MFC产电性能。  相似文献   

11.
以Ca.Brocadia为主要种属的厌氧氨氧化颗粒污泥和生物膜为研究对象,通过测定不同温度下厌氧氨氧反应活化能以探讨温度对以不同污泥形态存在的厌氧氨氧化菌的短期影响.结果表明,在15~25℃和25~35℃,以颗粒污泥及生物膜形态存在的厌氧氨氧化菌的反应活化能不同.在15~25℃,颗粒污泥和生物膜中的厌氧氨氧化反应活化能...  相似文献   

12.
2组ASBR接种污泥源分别为好氧硝化污泥、好氧硝化污泥和厌氧氨氧化污泥按2:1比例}昆合的混合污泥。在相同条件下,经过驯化培养均实现了厌氧氨氧化的稳定运行。接种好氧硝化污泥的反应器的适应期为29d,经过105d的培养反应器成功启动;接种混合污泥的反应器的适应期为13d,经过49d反应器启动成功。从2组ASBR污泥中提取细菌总DNA,经过厌氧氨氧化菌特异引物Pla46rc/Amx820对污泥样品进行PCR扩增、克隆和测序等分析。实验结果表明,接种不同污泥源条件下的反应器中厌氧氨氧化菌的特性存在差异,接种污泥源为好氧硝化污泥的反应器中存在的厌氧氨氧化菌种为CandidatusKuenenia,而接种混合污泥的反应器中存在的厌氧氨氧化菌种为CandidatusAnammox—oglobus,与最初接种的混合污泥中的厌氧氨氧化菌相同。当接种污泥中存在厌氧氨氧化菌时,该菌株经过长时间的驯化可成为优势菌种,而当接种污泥中无厌氧氨氧化菌存在时,CandidatusKueneniasp.可以在反应器中占主导,具有更强的竞争优势。  相似文献   

13.
为解决传统MFC反硝化菌在好氧阴极难以富集且脱氮效果差的问题,通过构建石墨MFC和碳刷MFC以阴极硝化耦合阳极反硝化的方式脱氮除碳,并对比分析2种不同电极MFC的性能。结果表明:在相同条件下石墨MFC的最大功率密度为6.71 W·m~(-3)NC,开路电压为902.13 mV;碳刷MFC的最大功率密度为5.11 W·m~(-3)NC,开路电压819.04 m V。启动阶段前15 d碳刷MFC的总氮去除率更高,之后石墨MFC的总氮去除率接近100%,碳刷MFC的总氮去除率在95%左右。石墨MFC的COD去除率高达93%,碳刷MFC的COD去除率在83%左右。相比于传统MFC,阴极硝化耦合阳极反硝化MFC不需要调节pH。相比于碳刷电极,石墨电极MFC可以启动和挂膜同时进行,缩短挂膜时间,且产电性能和脱氮除碳效果更好。  相似文献   

14.
采用双室微生物燃料电池(MFC)反应器,考察了不同初始Cr(VI)浓度下化学阴极与生物阴极MFC的产电及Cr(VI)去除情况。结果表明,在各Cr(VI)浓度梯度(20、28、32、36、40和44mg/L)下生物阴极MFC的产电及Cr(VI)去除性能均较化学阴极MFC更优,生物阴极最大输出电压为180.1mV,是化学阴极的1.3倍。随着初始Cr(VI)浓度的递增,两者对Cr(VI)去除的差异越明显,最终在Cr(VI)浓度为44mg/L时,生物阴极MFC的Cr(VI)去除率为66.4%,较化学阴极提高了55.1%。进一步由循环伏安扫描、电镜扫描及X-射线能谱分析证实生物阴极MFC较化学阴极MFC产电及去铬性能优越的主要原因除了生物阴极电极上电化学活性微生物的催化作用外,Cr(VI)还原产生的不导电Cr(III)沉积物在其电极上附着较少也是一个关键因素,该Cr(III)沉积物中含有Cr2O3。  相似文献   

15.
设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能.结果 表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m-2,而内阻最低为92 Q;该MFC可用于直接快速检测高浓度有机物的BOD,对...  相似文献   

16.
常温低基质厌氧氨氧化反应器启动及其稳定性   总被引:5,自引:0,他引:5  
以上向流生物滤池为反应器,以实验室内氧化沟回流污泥为接种污泥,采用先培育好氧生物膜,后转为厌氧环境培育厌氧氨氧化生物膜的方式,成功实现了常温低基质浓度下厌氧氨氧化反应器的启动。控制反应器进水pH为7.50~7.80,NH4+-N为30~40 mg/L,NO2--N为35~50 mg/L,温度为20~25℃。224 d以后,反应器启动成功。在稳定运行阶段,出水亚硝氮和氨氮的平均浓度分别为1.4 mg/L和4.6 mg/L,平均去除率分别为95.3%和90.1%,去除比例为1~1.8∶1,主要集中在1.4~1.5∶1,亚硝氮和氨氮去除的容积负荷分别为104.2 mg/(L.d)和146.0 mg/(L.d)。  相似文献   

17.
构建了双室微生物燃料电池(MFC),并应用于污水BOD的检测。优化了MFC型BOD传感器的检测条件,分析了传感器进行污水BOD检测的特征。结果表明,以A2/O污水处理工艺中厌氧段污泥进行接种,双室MFC型BOD传感器2周内完成启动,所产电流达到稳定。传感器的最佳检测条件为外接电阻500Ω,添加缓冲溶液并维持待测水样pH为7.0,添加35 mg/L的L-半胱氨酸作为吸氧剂维持阳极室厌氧环境,阴极室富氧水流量为20 mL/min。利用MFC产生的电流峰值准确检测污水水样BOD浓度,传感器检测范围为10~50 mg/L,检测时间小于3 h;利用MFC产生的电荷量准确检测污水水样BOD浓度,检测范围为10~100 mg/L,检测时间小于10 h。利用MFC电流峰值和电荷量检测污水水样BOD浓度,偏差均小于15%,传感器运行稳定,寿命较长。  相似文献   

18.
脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电   总被引:1,自引:0,他引:1  
以脱氮副球菌YF1构建纯种生物阴极微生物燃料电池(microbial fuel cell,MFC)进行脱氮和产电机理的研究。研究结果发现,阴极碳氮比、pH值对产电和脱氮效率有明显影响。当MFC的阴极运行条件pH值为8.0,碳氮比为20时,运行时间15 h时,脱氮率高达100%,输出电压为150 mV。上述结果表明,微生物燃料电池运行过程中,细菌降解硝酸根的机理为将硝酸根还原为N2或者直接将其作为自身的营养物质而利用。循环伏安(CV)与扫描电镜(SEM)的结果表明,在微生物燃料电池运行中,副球菌YF1通过接触导电作为产电的电子供体。  相似文献   

19.
用改良Hummers法和碳热还原法分别制备了石墨烯和碳化钴钼。用透射电镜(TEM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)表征了材料的形貌和结构。用循环伏安(CV)表征了其氧还原(ORR)催化性能,结果表明,复合材料的氧还原峰电流和起峰电位均大大优于单一材料。旋转圆盘电极(RDE)实验表明复合材料的氧还原反应为高效的四电子转移过程。含有6 mg·cm~(-2)石墨烯/碳化钴钼复合材料作为阴极催化剂的微生物燃料电池(MFCs)最大功率密度为418 mW·m~(-2),达到商业铂碳的68.3%。因此,廉价的石墨烯/碳化钴钼复合材料作为MFCs阴极氧还原催化剂具有巨大的应用潜力。  相似文献   

20.
构建了以二沉池剩余污泥厌氧发酵上清液为阳极底物的微生物燃料电池(MFC),考察了电池的产电性能、污染物去除效率及阳极微生物种群特征。结果表明,厌氧发酵污泥MFC作为污泥资源化的一种新途径,具有可行性。在厌氧发酵的预处理条件下,MFC体系稳定运行期间输出电压最高可达0.65 V,最大功率密度达86.89 m W·m~(-2),库伦效率为(5.12±0.5)%;与此同时TCOD去除率为(50.6±3.5)%。污泥在厌氧发酵阶段产生大量挥发性脂肪酸(VFAs),它们作为产电微生物易于摄取的阳极底物,能够促进污泥中有机质的去除,进而提高污泥MFC的产电效果。由阳极微生物群落结构可推断:产电和非产电细菌具有协同作用,共同维持MFC的稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号