首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对电解预处理-UASB-CASS工艺处理糠醛废水进行了研究,通过试验确定了电解预处理阶段主要影响因素为电流强度大小和电解时间,极板间距对COD去除率影响不大;电解预处理最佳工艺参数为:电流强度0.3 A,电解时间4 h,极板间距30 mm.在此条件下COD去除率为20.6%,废水可生化性提高了38.1%.加上后续的UASB-CASS工艺,出水COD浓度<150 mg/L,满足《污水综合排放标准》(GB8978-1996)二级排放标准.  相似文献   

2.
含吡啶有机废水物化预处理工艺   总被引:1,自引:0,他引:1  
对含吡啶有机废水进行分类收集,分质处理,确定了蒸发脱盐-微电解-芬顿氧化预处理工艺路线。实验表明,蒸发脱盐阶段,pH值为5时,COD去除率达62.77%;微电解阶段,pH值为4、反应时间为2.5 h时,COD去除率达24.49%;Fenton试剂氧化阶段,pH值为4,30%H2O2投加量为3.5 ml/L,Fe2+与H2O2摩尔比为1∶20,反应时间为2.5 h时,COD去除率达30.41%。经预处理,废水B/C比从0.075上升至0.48,3种特征吡啶的去除率均达到95%以上。  相似文献   

3.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

4.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

5.
为进一步提高铁炭内电解法处理制药废水的处理效率,采用添加不同强化剂的方法考察分析强化因子的影响效果。在C加入量10 g/L,铁屑30 g/L,反应时间150 min,pH值7.5的条件下,以不同的盐、金属铜、双氧水作强化剂分别加入反应体系中,检测COD去除效果。实验结果表明:当每升废水中分别加入氯化铜、硫酸锰、硝酸镍、金属铜、双氧水(30%)量为0.324 g、1.51 g、3.66 g、15 g、6 mL时,COD去除率分别为28.89%、44.70%、34.04%、23.45%和24.14%,强化剂的加入有效地提高了废水COD去除效果,也很好地提高了废水可生化性。  相似文献   

6.
铁碳微电解响应面优化预处理染料废水   总被引:2,自引:0,他引:2  
在单因素实验的基础上,以色度和COD去除率为评价指标,染料废水的初始pH值、铁碳比以及反应时间为考察因素,采用Box-Behnken方案构建与拟合响应曲面模型,通过该模型分析了这3个独立变量以及变量之间的交互作用对色度和COD去除率的影响,并确定了最佳工艺,即当控制曝气量9.42 L/min时,pH值为3.5,铁碳比为0.75,反应时间为35 min,COD和色度的去除率分别达到83.1%和87.8%,回归模型的预测值和测定值偏差率分别为0.7%和0.4%.  相似文献   

7.
铁炭微电解预处理电路板废水   总被引:3,自引:0,他引:3  
采用铁炭微电解法预处理电路板废水.结果表明,在进水pH为2.00、铁炭质量比为4:1、振荡时间为20 min的铁炭微电解静态实验最佳条件下,絮凝出水COD去除率为30%;在进水pH为2.00、铁炭质量比为4:1、水力停留时间为50 min的铁炭微电解柱动态实验最佳条件下,连续曝气.絮凝出水COD为11021 mg/L,COD去除率约为34%,BOD5/COD从0.12上升到0.32,可生化性提高,Cu2+质量浓度从9.11 mg/L下降至0.76 mg/L,降低了废水的生物毒性,为生化处理创造了条件.  相似文献   

8.
高酚焦化废水萃取脱酚预处理   总被引:1,自引:0,他引:1  
为了降低高酚焦化废水中挥发酚的浓度,实验研究了磷酸三丁酯煤油溶液在不同条件下对高酚焦化废水进行萃取脱酚预处理的效果。结果表明,萃取时间为8min,磷酸三丁酯煤油浓度为30%,温度低于40%,pH低于8.0,萃取比(油/水)R=1:2时,经过萃取后分水挥发酚浓度由4165mg降低到127.62mg/L,去除率高达96.94%,为后续生化处理奠定了基础。而萃取剂经过氢氧化钠溶液反萃取再生后,萃取剂的回收利用率可达94.25%以上。  相似文献   

9.
在升流式厌氧污泥床(UASB)反应器内以厌氧氨氧化(Anammox)颗粒污泥为基础,通过先添加乙酸钠再逐步替换为苯酚的方式,启动厌氧氨氧化耦合异养反硝化(SAD)工艺;考察启动过程中耦合系统的脱氮除碳性能及颗粒污泥性状。结果表明:系统启动成功时,TN、COD及苯酚的去除率分别为84.78%、85.23%和84.09%,总氮去除负荷(NRR)及碳去除负荷(CRR)分别为0.73、0.31 kg·(m3·d)−1;苯酚对Anammox菌的抑制作用更强,反硝化菌在Anammox颗粒污泥表面增殖;溶解性微生物产物(SMP)和胞外聚合物(EPS)含量增多,FT-IR和3D-EEM分析进一步证实,蛋白质(PN)是SMP、EPS的主要成分,色氨酸和酪氨酸类物质在抵抗苯酚毒性、维持颗粒污泥稳定中起到重要作用。  相似文献   

10.
生物-微电解组合工艺处理染料废水研究   总被引:5,自引:1,他引:5  
采用上流式污泥床过滤器(upflow blanket filter,UBF) 曝气生物滤池(biological aerated filter,BAF) 微电解的组合工艺,对盐度接近2%、色度和COD分别约为8 000倍和600.5 mg/L的染料废水进行处理.经过连续120 d的稳定运行后,组合系统处理效果良好,脱色率和COD去除率分别达到99%和75%以上.UBF和微电解单元均可以大幅度提高废水的可生化性,有利于进一步的生物处理.UV-Vis扫描和GC-MS分析表明,该组合工艺能破坏染料的发色基团和共轭双键,并能高效降解原水中的酚类、氯代有机物和复杂的杂环类化合物.实验结果表明,UBF BAF 微电解的组合工艺是处理染料废水的一种有效方法.  相似文献   

11.
为了实现印染废水的高标准排放,构建了生物吸附/MBBR/混凝沉淀池/硫铁自养反硝化/活性焦组合工艺,并对其进行了优化运行研究;考察了不同水力停留时间(HRT)和溶解氧(DO)对系统污染物去除的影响。结果表明:生物吸附池和MBBR池的HRT分别为1 h和10 h、DO分别为1 mg·L−1和5 mg·L−1的情况下,污染物的去除效果最佳;其中,COD的去除率达到98%;在最优条件下,组合工艺出水COD、${\rm{NH}}_4^{+} $-N、TP和TN浓度分别为 16、0.56、0.32和1.39 mg·L−1,污水色度基本完全去除。该组合工艺实现了印染废水的高标准排放,为印染废水处理的工程应用提供了数据和技术支撑。  相似文献   

12.
根据吡虫啉农药废水成分复杂,含有大量有毒有害物质的特点,在小试实验研究的基础上,确定了预处理的组合工艺流程为:钙法除磷-碱解-催化微电解。实验结果表明,预处理的适宜参数为:钙法除磷的pH值11,搅拌速度为100 r/min,钙的投加量为理论计算值的1.4倍;碱解反应的温度70℃,pH值11,反应时间2 h;催化微电解反应的pH值3~4,曝气时间3 h,催化剂与铸铁屑的质量比1∶5。组合工艺对COD、色度、磷的总去除率分别达到81%、90%和99.99%,废水的可生化性能得到很大改善。组合工艺不仅适用于预处理高浓度吡虫啉农药废水,也能为其他高浓度、难生物降解农药废水的治理提供有益的参考。  相似文献   

13.
靛蓝牛仔布印染废水组分复杂,浓度高、水量大,属于难处理的工业废水,为了有效降低后续生物处理单元的负荷,采用铁炭微电解工艺对该废水进行预处理;通过正交实验考察pH、反应时间及铁炭比处理效果的影响规律及COD去除反应动力学,并对各因素作了单因素影响实验,确定了最佳工艺条件.结果表明,铁炭微电解法是预处理靛蓝牛仔布印染废水的一种有效方法,在Fe/C为2:1、pH为3的条件下反应90 min,铁炭微电解出水COD的去除率在49.2%,色度去除率达到80%,该印染废水经微电解处理后,BOD5/COD比值可从原来的0.248上升至0.436,可生化性明显提高.此外,微电解预处理靛蓝牛仔布印染废水中COD的去除反应符合二级反应动力学规律.  相似文献   

14.
白腐真菌降解经微电解预处理二硝基重氮酚废水的研究   总被引:4,自引:0,他引:4  
利用自行培养、驯化的白腐真菌,对经过微电解预处理的二硝基重氮酚(DDNP)废水进行了生物降解试验.结果表明,经过微电解预处理后的DDNP废水(含CODCr467 mg/L)经生化处理108 h后,出水中CODCr在131 mg/L左右,达到国家二级排放标准;其中的苯胺类、硝基类的去除率达到99.9%以上,达到国家一级排放标准.对试验所获得的时间序列进行动力学研究结果证明,白腐真菌降解经微电解预处理后的DDNP废水的反应为准一级动力学反应.  相似文献   

15.
研究了矿化垃圾生物反应床处理含酚废水的工艺参数.矿化垃圾生物反应床在经过驯化后,形成了稳定的微生物系统,反应床对有机酚具有较高的去除率.有机酚的去除率受湿干比影响较大,随着配水速率的提高,反应床对有机酚的去除率逐渐下降,配水速率大于0.342 cm/min时,去除率急速下降.在进水有机酚质量浓度为20 mg/L,连续配水时间6 h,湿干比为1∶8,配水速率为0.254 cm/min的条件下,反应床出水可达到或接近国家三级排放标准.  相似文献   

16.
采用铁碳微电解法对实验室有机废水进行小型处理实验,研究该方法的废水净化特性,并优化进水pH值、水力停留时间(HRT)和曝气量等主要运行工艺参数。通过正交实验得到最佳处理条件pH值为5,水力停留时间为6 h,曝气量为12 L·h-1。以实际最佳条件运行反应器,废水COD去除率可达到85%,废水中芳香族化合物等难降解物质得到降解,BOD5/COD由0.1提高到0.4以上,出水可生化性大幅提高。研究表明,铁碳微电解法适于处理实验室难降解有机废水,估算处理成本约为9.84元·m-3废水。  相似文献   

17.
分别采用混凝—超滤(组合工艺Ⅰ)、生物活性炭(BAC)滤池—超滤(组合工艺Ⅱ)、混凝—BAC滤池—超滤(组合工艺Ⅲ)作为反渗透前的预处理工艺,对印染废水二级生化出水进行处理,考察污染物去除效果,并分析超滤膜性能。结果表明,3种超滤组合工艺的出水浊度0.4NTU,淤泥密度指数(SDI)5,均能达到反渗透进水的要求。组合工艺Ⅲ对COD、真色、UV254、浊度的平均去除率分别为52.94%、49.23%、49.95%、99.53%,均高于组合工艺Ⅰ、Ⅱ。组合工艺Ⅲ的出水SDI和比膜通量均优于组合工艺Ⅰ、Ⅱ。通过超滤膜微观结构和阻力分布分析,发现组合工艺Ⅲ中不可逆的膜污染最轻。组合工艺Ⅲ为印染废水反渗透前的最佳预处理工艺。  相似文献   

18.
以腈纶废水的进水pH值、海绵铁投加量、铁碳质量比及反应时间为考察因素,COD去除率为评价指标,在单因素实验基础上,通过Box-Behnken方案构建与拟合响应曲面模型,分析了此4个独立因素及因素之间的交互作用对COD去除效果的影响,确定了最佳预处理工艺,即当进水pH为2,海绵铁投加量为35 g·L-1,铁碳质量比为0.5,反应时间为75 min时,COD去除率可达29.59%,回归模型的预测值为29.68%,该模型可靠。并考察了预处理对生化系统的影响,在进水COD均值923.09 mg·L-1条件下,最终出水浓度为232.89 mg·L-1,去除率为74.77%,较单独生化处理提高25.49%。  相似文献   

19.
为实现酚醛废水的高效低成本处理,开发了“微生物辅助铁炭微电解-厌氧折流板反应器耦合微生物电解池(ABR-MECs)-序批式活性污泥法(SBR)”组合工艺.应用该工艺对酚醛树脂生产废水进行了处理,结果表明:采用微生物辅助铁炭微电解进行预处理,可大大提高酚醛废水的可生化性,降低工艺预处理成本;厌氧段ABR-MECs工艺可实...  相似文献   

20.
本文对近年来超临界水氧化法 (SCWO)在含酚废水处理方面的发展进行了综述。主要介绍了含酚废水催化超临界水氧化技术的进展 ,讨论了催化剂、影响因素、转化率、机理及动力学等方面的内容  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号