共查询到20条相似文献,搜索用时 0 毫秒
1.
表面活性剂对焦化污染土壤中多环芳烃淋洗修复研究 总被引:1,自引:0,他引:1
异位土壤淋洗是一种高效修复污染土壤技术。以孝义市某焦化厂污染土壤为研究对象,采用批处理实验,探究表面活性剂曲拉通-100(TX-100)、吐温80(TW80)、烷基糖苷(APG)作为淋洗剂对土壤中16种多环芳烃(PAHs)的淋洗效果,并以TW80为代表,考察了淋洗剂浓度、淋洗时间、pH以及淋洗方式对污染土壤中PAHs的去除效果。结果表明,TW80、TX-100和APG对土壤中16种PAHs的总去除率分别为25.67%、18.89%和16.77%。TW80作为淋洗剂,3环PAHs的去除率低于高环(3环)PAHs,主要与焦化污染土壤中以3环PAHs为主有关;高环PAHs随着环数的增加,去除率降低。焦化污染土壤中PAHs的去除在240min达到平衡;大部分PAHs去除率随TW80浓度的增加而增大;pH可不作调整;在TW80用量相同情况下,建议采用单次淋洗。 相似文献
2.
针对场地土壤中高浓度多环芳烃较难去除的问题,利用微乳液具有界面张力低、增溶能力强和体系稳定的特点,制备了污染土壤淋洗修复剂。采用表面活性剂、助表面活性剂、生物柴油为主要组分制备微乳液,优化微乳液最佳组分配比及制备条件,并比较表面活性剂、复配表面活性剂、生物柴油和微乳液等不同类型淋洗剂对钢铁厂污染土壤中多环芳烃的去除效果。结果表明,最佳微乳液组分及pH条件为:7.7% Tween-80、7.7% TX-100、15.4%正丁醇、20.5%生物柴油、pH=7。在不同类型的淋洗剂中,微乳液淋洗剂对多环芳烃的去除率最高(89.7%),显著高于其他类型淋洗剂的效果。多环芳烃的去除率与淋洗剂和土壤的液固比、洗脱振荡时间等有关,确定的微乳液最佳修复条件为:液固比为4∶1、洗脱振荡时间为8 h。按混合表面活性剂与生物柴油比为6∶4制备的微乳液洗脱效果最佳。本研究结果可为高效去除污染土壤中多环芳烃打下基础。 相似文献
3.
多环芳烃污染土壤生物修复的强化方法 总被引:6,自引:0,他引:6
生物降解是去除环境中多环芳烃(PAHs)的重要途径,通过采取一些强化措施,如使用表面活性剂,添加营养物质和提供共代谢底物等,可显著提高PAHs降解速度和程度,为生物修复技术的成功应用提供前提。在分析中,对近年来国内外在PAHs污染土壤生物修复强化方面的研究进展进行了综述。 相似文献
4.
表面活性剂增效电动技术修复多环芳烃污染土壤 总被引:1,自引:0,他引:1
研究了电动修复过程中修复时间和表面活性剂Triton X-100、鼠李糖脂对多环芳烃芘污染土壤的修复效果的影响。结果表明,在电动修复过程中,随着修复时间的增加,芘的去除率相应提高。通过向电解液中添加表面活性剂Triton X-100,芘的去除率从11.64%提高到了23.42%,当在电解液中添加浓度为40倍CMC的鼠李糖脂后去除率升高至36.29%,阳极附近土壤甚至达到了92.49%,这表明Triton X-100和鼠李糖脂均能促进土壤中芘的溶解和迁移,鼠李糖脂的促进作用高于Triton X-100。 相似文献
5.
多环芳烃污染土壤的植物与微生物修复研究进展 总被引:21,自引:1,他引:21
概括介绍了多环芳烃污染土壤的植物修复、微生物修复和植物-微生物联合修复的原理、优缺点、影响因素及国内外研究进展,并对生物修复的未来发展进行了展望。 相似文献
6.
7.
8.
9.
植物混种原位修复多环芳烃污染农田土壤 总被引:1,自引:1,他引:1
通过比较实验前后土壤微生物主要类群数量、PAHs降解菌数量、土壤PAHs含量和植物不同部位PAHs含量变化,评价植物单种和混种野外原位修复多环芳烃(PAHs)污染农田土壤的效果。结果显示,150 d天生长期内,黑麦草/小麦混种及黑麦草/蚕豆混种修复效果最好,对土壤PAHs总量的降解率分别达到了59.4%和64.8%。同时,这2个混种处理土壤细菌、真菌和PAHs降解菌数量分别显著高于相应的小麦、蚕豆和黑麦草单种处理。植物不同部位PAHs含量高低次序为根部>茎叶≈籽粒。混种模式下,蚕豆和小麦不同部位PAHs含量比单种模式的不同程度降低,特别是籽粒部。植物混种模式不仅显著提高了土壤PAHs的降解率,还降低了农作物体内PAHs含量,实现了边生产边修复,在污染农田土壤修复领域有着广阔的应用前景。 相似文献
10.
均匀电场下多环芳烃在土壤中的迁移 总被引:2,自引:0,他引:2
当循环电解液流速为800 mL/h,电解液为无菌水时,电渗流流量、菲和芘在土壤中迁移量在电压梯度为1 V/cm作用下比电压梯度为0.5 V/cm时要多;电动注入表面活性剂Tween80和HPCD均可以提高菲和芘在土壤中的迁移,注入Tween80和HPCD浓度分别为500和1 000 mg/L时,相应地Phe提高5.8倍和11.7倍、芘提高2倍和3.4倍;而BaP在水中的溶解度太小,电场作用和电动注入表面活性剂对BaP在土壤中的迁移量影响很小。为建立电动修复有机污染物污染提供了技术基础。 相似文献
11.
12.
13.
14.
15.
多环芳烃作为土壤的主要污染源之一,其修复技术的研究对土壤可持续利用具有重要的意义;但目前的研究主要基于室内小试实验,对具体修复技术在实际现场中的应用少有报道。基于上海青浦区西虹桥沈海高速东侧17-02污染场地的工程实践,结合室内实验,详细地介绍了原场异位类Fenton化学氧化修复多环芳烃污染土壤施工工艺。处理结果表明:以柠檬酸为催化助剂的类Fenton化学氧化能够有效地处理场地污染土壤中的苯并(a)蒽、苯并(a)芘、苯并(b)荧蒽和茚并(1, 2, 3-cd)芘等超标污染物;修复后场地土壤各项物理指标相比修复前变化较小;同时,类Fenton氧化反应放热,修复过程中土壤微生物能够将有机柠檬酸快速降解,有效降低了化学氧化对土壤pH的影响。 相似文献
16.
腐植酸对多环芳烃在污染土壤中淋出及截留分解的效果研究 总被引:3,自引:0,他引:3
多环芳烃是固废拆解地一类污染较严重的有毒有机物质,用腐植酸作表面活性剂淋洗污染土壤起到较好的增溶及截留分解污染物的作用,达到修复污染土壤的目的。实验结果表明,随着腐植酸加入量的增加,菲、萘、荧蒽、芘和∑PAHs的淋出量显著提高,在污染红壤中最大淋出率分别为52.9%、70.1%、30.5%、46.1%和42.8%,在污染水稻土中最大淋出率分别为51.8%、67.3%、35.0%、38.3%和35.5%,同时多环芳烃的截留分解率也相对较高,而污染红壤和水稻土的总修复率分别达到56.3%和49.8%。 相似文献
17.
通过对多环芳烃(PAHs)污染土壤的异位热脱附实验,探究了碱基类(Ca(OH)2、CaO、NaOH)、氧化类(过硫酸钠、过氧化苯甲酰、过碳酸钠)和其他类(FeCl3、CuCl2、颗粒活性炭)改性剂对PAHs热脱附效率的提升作用,优选最佳改性剂及配比。3类改性剂的优选结果为2.0%(质量分数,下同)Ca(OH)2、5.0%过氧化苯甲酰和5.0%FeCl3。添加2.0%Ca(OH)2在300℃下脱附10 min、添加5.0%过氧化苯甲酰在200℃下脱附60 min或添加5.0%的FeCl3在150℃下脱附60 min均可使各PAHs组分残留量达到《场地土壤环境风险评价筛选值》(DB11/T 811—2011)的修复标准。添加2.0%Ca(OH)2对土壤PAHs热脱附去除效果最好,300℃下PAHs热脱附去除率最高,可达96.31%,而5.0%过氧化苯甲酰对PAHs热脱附去除率提升更明显。 相似文献
18.
污染土壤的淋洗法修复研究进展 总被引:11,自引:1,他引:11
污染土壤淋洗技术是修复污染土壤的一种新方法,是对污染土壤生物修复的一种补充,使污染土壤修复的系统化成为可能。淋洗法主要使用淋洗剂清洗土壤,使土壤中污染物随淋洗剂流出,然后对淋洗剂及土壤进行后续处理,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点,尽管也存在一些问题,但其技术上的优势也是其他方法难以取代的,所以有良好的应用前景。 相似文献
19.
污染土壤淋洗技术是修复污染土壤的一种新方法 ,是对污染土壤生物修复的一种补充 ,使污染土壤修复的系统化成为可能。淋洗法主要使用淋洗剂清洗土壤 ,使土壤中污染物随淋洗剂流出 ,然后对淋洗剂及土壤进行后续处理 ,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同 ,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素 ,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点 ,尽管也存在一些问题 ,但其技术上的优势也是其他方法难以取代的 ,所以有良好的应用前景。 相似文献
20.
非离子型表面活性剂吐温80增溶条件下菲的生物降解 总被引:7,自引:1,他引:7
本实验的目的是研究非离子型表面活性剂吐温80(Tween—80)对菲的溶解及生物降解过程的影响。结果表明,通过吐温80促溶,菲在水中的溶解度有明显的提高。在与菲共同降解的过程中,吐温80亦能作为碳源被降解微生物利用。但是,高浓度的吐温80对菲的降解有一定的抑制作用,同时在菲的降解完成后造成较高的残留表面活性别量和微生物量。 相似文献