首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用混凝-两级厌氧/缺氧/好氧-膜生物反应器(A3-MBR)处理实际餐厨垃圾发酵废液,通过对运行参数进行优化确定最优工况,并考察其在该条件下长期运行的处理效果。结果表明,混凝预处理的最适pH为8,最佳混凝剂投加量为1 000 mg·L~(-1)。A3-MBR系统在最优运行条件:总HRT为110 h,回流比为200%,进水COD负荷控制在2.3~3.6 g·(L·d)-1下可稳定运行。当系统进水COD、TN、NH3-N和TP浓度分别为(10 984±383)、(335.9±16.2)、(209.1±6.7)和(37.2±2.3)mg·L~(-1)时,系统进水有机负荷为2.3~3.5 g·(L·d)-1,在最优条件下处理系统出水的COD、TN、NH3-N和TP分别为(202±23)、(62.1±7.1)、(0.33±0.13)和(8.3±0.9)mg·L~(-1),其去除率分别为98.2%、81.5%、99.8%和77.8%。A3-MBR系统对有机物具有良好的去除效果,厌氧段未积累挥发性脂肪酸。最终出水中溶解性有机物主要为II区芳香族蛋白质类似物,残留的挥发性有机物以酯类物质为主。  相似文献   

2.
吉飞  王成波  李继  李永 《环境工程学报》2019,13(7):1584-1591
采用多级流化床-曝气生物滤池组合工艺,以高氨氮工业废水为处理对象,研究了中试系统的启动方法、稳定运行阶段对污染物的去除效能及与传统活性污泥法相比的优势。结果表明:采用控制进水流量和逐步增加进水负荷的运行方法,历时近50 d,可实现中试系统的启动;启动阶段,系统对COD和NH_4~+-N的平均去除率分别为68.74%和97.92%,出水COD和NH_4~+-N的质量浓度平均分别为176.35 mg·L~(-1)和13.52 mg·L~(-1);稳定运行阶段,系统在进水流量为2.0 m~3?d~(-1)的工况下,对COD和NH_4~+-N的平均去除率分别为92.66%和99.32%,出水COD和NH_4~+-N的质量浓度平均分别为152.24 mg·L~(-1)和1.32 mg·L~(-1),其中,出水的NH_4~+-N可以稳定达到地表水IV类水标准。与传统活性污泥法工艺相比较,该中试系统可以实现对COD的去除率从85.37%增加到92.66%,对NH_4~+-N的去除率从72.53%增加到99.32%。  相似文献   

3.
采用4级生物膜反应器串联处理煤气化废水,分析了反应器的启动过程、污染物去除能力及沿程水质特征,考察了水力停留时间(HRT)、进水污染物负荷对处理效果的影响。结果表明:系统在16 d的培养时间内可快速完成微生物的驯化及固定化;在连续进水、持续曝气的运行方式下,各反应器均具备对NH_4~+-N、COD、TN及SS的同步去除能力,在HRT=55.6 h、ρ(NH_4~+-N)=245~363 mg·L~(-1)、ρ(COD)=761~1 764 mg·L~(-1)、ρ(TN)=262~377 mg·L~(-1)、ρ(SS)=121~143 mg·L~(-1)的进水条件下,反应器出水NH_4~+-N、COD、TN及SS的质量浓度分别为0.23~1.37、16.3~26.1、91.6~139和12.3~18.5 mg·L~(-1),平均去除率分别为99.8%、98.1%、65.8%和88.2%,同步硝化反硝化效率为70.1%;在HRT≥39.2 h、进水NH_4~+-N负荷≤0.203 kg·(m~3·d)~(-1)、进水COD负荷≤1.357 kg·(m~3·d)~(-1)的条件下,出水NH_4~+-N、COD浓度均能满足GB 31571-2015排放标准要求。  相似文献   

4.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH_4~+-N)和总氮(TN)浓度分别为(1 100±70)mg·L~(-1)和(1 520±65)mg·L~(-1),1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L~(-1),其中以有机氮(TON)为主,NH_4~+-N浓度约25 mg·L~(-1);经2级IASBR处理后,出水TN和NH_4~+-N浓度分别稳定在40 mg·L~(-1)和20 mg·L~(-1)以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN≤40 mg·L~(-1)的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L~(-1),经过2级IASBR处理后出水COD降至约770 mg·L~(-1)。  相似文献   

5.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

6.
采用多级潮汐流人工湿地(multi-stage tidalflow constructed wetlands,MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids,ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH_4~+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH_4~+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·~(L-1)的条件下(工况1),出水COD、NH_4~+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH_4~+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L~(-1)的条件下(工况2),出水COD、NH_4~+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH_4~+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。  相似文献   

7.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

8.
对某淀粉污水厂与实验室的AO处理工艺进行比较研究,通过常规水质监测及Miseq测序技术解析水质处理效果、进水成分差异与AO工艺菌群结构的相关性。结果表明,当进水COD和NH_(3-)N浓度分别为500和450.0 mg·L~(-1),污水厂稳定运行出水COD和NH_(3-)-N浓度分别为83和1.3 mg·L~(-1),其去除率分别达到96.52%和99.66%;实验室AO处理工艺调试45 d后出水COD和NH_(3-)-N浓度分别为78.8和49.9 mg·L~(-1),其去除率分别达到90.83%和88.50%。Miseq测序结果表明,Proteobacteria、Bacteroidetes、Chloroflexi、Firmicutes、Actinobacteria和Candidate division TM7在各样本中为主要菌门。污水厂与实验室AO处理工艺各样品菌属表现出相同的变化趋势,当AO系统运行良好时,其优势菌属为Anaerolineaceae、Saprospiraceae和Betoaproteobacteria等,三者总相对丰度比例为30%。污水厂与实验室AO处理工艺菌群也存在一定差异,其中较显著的有Firmicutes、Saprospiraceae和Betaproteobactenria等。  相似文献   

9.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

10.
采用接触氧化-水解酸化-缺氧-MBR工艺处理鲁奇炉煤制气废水,研究了水力停留时间对污染物去除效果的影响,以及各工艺单元的作用特征。结果表明,进水COD和NH_3-N分别为2 861~2 953 mg·L~(-1)和79~94 mg·L~(-1)时,出水COD和NH_3-N可降至181~235 mg·L~(-1)和4~6 mg·L~(-1)。水力停留时间延长,COD和NH_3-N去除率上升,但升幅不大。水解酸化出水B/C为0.285,大于其进水B/C 0.247,水解酸化起到了改善废水可生化性的作用。采用GC-MS对系统进水和各工艺单元出水进行物质组分分析,结果显示系统进水含有大量酚类化合物和少量酯类化合物。随着废水流经各工艺单元,有机污染物逐渐被分解,检出的化合物逐渐减少,系统出水无酚类化合物。  相似文献   

11.
为进一步改善农村、小城镇等分散型区域生活污水的处理现状,搭建了一套外置浸没式厌氧膜生物反应器(anaerobic membrane bioreactor,AnMBR)处理实际生活污水,在室温(18~37℃)下运行288 d,优化HRT为12~14 h。进水取自某校园中水处理站内的调节池出水,日水质变化较大,TCOD(总COD)、NH_3-N、TN、TP的平均浓度分别为477、69.1、76.9、6.3 mg·L~(-1)。自启动运行55 d后,AnMBR出水的TCOD平均值降至50 mg·L~(-1)以下,并稳定运行117 d,期间进水容积负荷率VLR平均为0.83 kg·(m~3·d)~(-1),TCOD去除率平均值为90.6%。An MBR对氮和磷几乎无去除效果。  相似文献   

12.
针对颜料废水有机物浓度含量高、水质波动大、可生化性差等特点,实验采用了UASB-PACT(powdered activated carbon treatment)组合工艺在常温下对颜料废水进行中试研究。实验共进行了119 d,分2个阶段进行,第1阶段为低浓度运行阶段,进水COD逐步提升至3 000 mg·L~(-1)左右,经过36 d的运行,系统出水COD可稳定保持在500 mg·L~(-1)以下,UASB、PACT反应器对COD的平均去除率分别为37.0%和80.5%;第2阶段为负荷提高阶段,共运行了83 d,UASB、PACT反应器对COD的平均去除率分别为53.9%和81.7%。76 d后在平均进水浓度为6 207.75 mg·L~(-1)的条件下,出水COD500 mg·L~(-1)。在工程应用阶段,经过6个月的调试,在进水量1 920 m3·d-1、COD为5 000 mg·L~(-1)的条件下,UASB反应器的出水COD1 500 mg·L~(-1),PACT出水COD在300~500 mg·L~(-1)之间波动,去除率分别为50.9%和75.3%。实验结果表明,针对有机颜料废水,采用UASB-PACT组合工艺能够达到很好的处理效果,出水满足《污水排入城镇下水道水质标准》(CJ 343-2010)中A级排放要求。  相似文献   

13.
为深入了解农村污水处理设施的实际进水水质特征,以江苏省20个村庄内生活污水处理设施的进水为研究对象,开展为期1年的水质监测。结果表明,设施进水水质呈季节性变化规律,污染物浓度1月份最高,7月份最低。进水主要污染物指标分布规律为:春夏秋冬四季化学需氧量(COD)低浓度范畴(COD≤100 mg·L~(-1))占样本总数的比例最大,分别为66.7%、68.4%、77.8%和40.9%;总磷(TP)浓度低于3 mg·L~(-1)的样本数占总数比例最大,分别为春季53.3%、夏季63.2%、秋季66.7%和冬季36.4%。总氮(TN)与NH_4~+A随季节变化规律相同,夏季处理设施进水中低浓度范帱(TN≤20mg·L~(-1)、NH_4~+-N≤15 mg·L~(-1))占总数比例最大,分别为42.1%、44.7%。冬季处理设施进水TN、NH_4~+-N浓度主要变化范围分别是40~85mg·L~(-1)和35~70mg·L~(-1),属中高浓度范畴,占样本总数的36.4%和54.5%。设施进水C/N偏低,年均值为3.9;NH_4~+-N占TN比例较高,年均值为68.9%。农村生活污水处理设施的设计,应以设施进水端水质为基准,以确保出水水质达标和防止资源浪费。  相似文献   

14.
针对农村生活污水水质水量波动性大的特点,应用基于Engelbart SST工艺的一体化处理设备对农村生活污水进行了处理,并考察了该设备在水质波动情况下的处理效果与运行能耗。结果表明,在DO为0.3~0.5 mg·L~(-1)、回流比为1 000%~2 000%、HRT为12~15 h、MLSS为5 600~8 800 mg·L~(-1)的工艺条件下,配合化学除磷,设备COD、NH_3-N、TN、TP平均去除率分别可达到95.3%、94.9%、78.9%、92.2%。该设备表现出了良好的抗波动能力,在COD、NH_3-N、TN处理负荷较设计值波动幅度分别为-39.7%~171.0%、-34.8%~96.9%、-45.0%~61.1%的条件下,出水COD≤50 mg·L~(-1)、NH_3-N浓度≤5.0 mg·L~(-1)、TN浓度≤15 mg·L~(-1)。该设备利用曝气自动控制系统在经济DO条件下运行,吨水能耗为0.24~0.33 kWh。本研究结果可为农村污水处理的技术选择和运行提供参考。  相似文献   

15.
以垃圾渗滤液MBR出水为研究对象,采用臭氧-活性炭组合工艺对其进行深度处理。相比单一臭氧处理和单一活性炭吸附,臭氧-活性炭组合工艺能提高COD及NH_3-N的去除率,并且显示出良好的协同作用。实验中利用三维荧光光谱和凝胶色谱对水质进行分析,同时考察了活性炭种类及预处理方式、活性炭用量、pH及臭氧浓度对COD及NH_3-N去除率的影响。结果表明:pH=4.54、臭氧浓度为1.34 mg·min~(-1)、活性炭投加量为10 g·L~(-1)、臭氧处理时间为30 min、活性炭吸附时间为180 min,当垃圾渗滤液MBR出水COD为1 550 mg·L~(-1),NH_3-N为75 mg·L~(-1)时,经处理后,COD浓度为93 mg·L~(-1),NH_3-N浓度为12 mg·L~(-1),COD的去除率达到94%,NH_3-N的去除率达到84%,实现了垃圾渗滤液MBR出水的达标排放。pH对污染物的去除有较为明显的影响,高pH有利于NH_3-N的去除,但是过高的pH不利于COD的去除。同时,提高臭氧和活性炭的投加量能明显提高COD及NH_3-N的去除率。  相似文献   

16.
采用SDC-03型生物载体作为填料,考察厌氧-特异性移动床生物膜反应器对农药含酚废水中酚的去除效果,并探讨水力停留时间(HRT)、溶解氧(DO)、进水酚浓度、pH值4个影响因素对反应器处理效果的影响。实验结果表明:在水温20~35℃,进水pH为7.0~8.5,酚浓度为36.70~86.56 mg·L~(-1),系统水力停留时间(HRT)为10 d的操作条件下,酚可稳定在2 mg·L~(-1)以下,运行后期酚浓度可降到0.5 mg·L~(-1)以下,平均去除率为98.24%,最高可达99.56%。出水水质满足《污水综合排放标准》(GB 8978~(-1)996)的排放标准。  相似文献   

17.
采用臭氧-BAF组合工艺处理西北地区微污染窖水,使用比紫外吸收值(SUVA)、有机物分子量分布和三维荧光光谱等指标分析了臭氧预氧化对微污染窖水有机物特性的影响,研究了组合工艺对不同污染物的去除效果。结果表明:原水经臭氧预氧化后类腐殖质、类色氨酸物质含量分别下降65%、18%;水中小分子有机物含量增加,进水可生化性提高;经臭氧预氧化后BAF反应器出水类色氨酸物质含量低于未经臭氧预氧化的BAF反应器出水,臭氧预氧化起到了强化后续生物处理的作用。反应器出水CODMn、NH_3-N浓度分别为2.97 mg·L~(-1)、0.12 mg·L~(-1),满足生活饮用水卫生标准的要求;TOC、UV254和TN去除率分别为55%、53%和45%,水中污染物质得到有效去除。  相似文献   

18.
采用DBF-BAF工艺处理焦化废水,考察不同硝化液循环比条件下系统的脱氮除碳效果,通过分析循环比对各反应器内的氮赋存反应、COD去除特性的影响,探究其对DBF-BAF工艺处理焦化废水时脱氮除碳效能的影响机制。结果表明:适当增大循环比,有利于系统脱氮除碳,在300%的最佳循环比下,系统对COD、NH_4~+-N、有机氮和TN的平均去除率分别为87.57%、97.34%、99.18%和79.97%,出水NH_4~+-N稳定达到5.00 mg·L~(-1)以下;循环比通过改变各反应器进水COD、NO_3~--N、NH_4~+-N、有机氮和DO浓度来影响其内的碳氧化反应和氮素的转化与去除,进而影响系统的脱氮除碳效能。  相似文献   

19.
针对城市污水处理厂污泥厌氧消化液回流而引起城市污水处理厂处理系统内氨氮累积的问题,采用多级潮汐流人工湿地(MTF-CWs),研究MTF-CWs对污泥厌氧消化液中氨氮和有机物的去除特征及其主要去除途径。经过260 d的运行,结果表明,NH_4~+-N和COD平均进水浓度分别为859.55 mg·L~(-1)和446.52 mg·L~(-1),MTF-CWs对NH_4~+-N和COD均有较好的处理效果,平均去除率分别为66.50%和47.10%。在MTF-CWs中,转化为NO_2~--N和NO_3~--N占被去除NH_4~+-N的73.21%,硝化反应是NH_4~+-N去除的主要途径,MTF-CWs的平均硝化速率为0.3 kg·(m~3·d)~(-1)。TN的平均去除率为17.63%,去除效果较差,其原因在于原水中缺少反硝化所需要的碳源。  相似文献   

20.
通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH_4~+-N)与硝氮(NO3--N),考察不同NO3--N/NH_4~+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH_4~+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH_4~+-N浓度为20~40 mg·L~(-1)的条件下,NO3--N/NH_4~+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH_4~+-N比为1.2时,耦合效果最佳,对应的NH_4~+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62±0.44)mg·(g·h)-1(以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号