首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
利用成都市2013年6月至2014年5月的PM10和PM2.5浓度监测数据,分析大气颗粒物污染特征,并探讨其与气温、相对湿度、降雨、风向、风速等气象因子的关联性。结果表明:成都市大气PM2.5污染较严重;PM10和PM2.5浓度及超标率均表现为冬季秋季春季夏季,秋季和冬季为大气颗粒物污染高发期;PM2.5对PM10贡献显著;气温超过10℃时,PM10和PM2.5最高浓度大体随气温升高而降低;相对湿度为40%~80%时,PM10和PM2.5浓度随相对湿度增加而升高;相对湿度超过80%时,易发生降雨,PM10和PM2.5浓度降低;降雨对PM10的清除量高于PM2.5,但降雨后PM10和PM2.5浓度较快回升;PM10和PM2.5浓度在偏西风下高于其他风向;PM10主要受局地源影响,而PM2.5主要受西北方向上的外来源影响。  相似文献   

2.
以和田绿洲西北部的墨玉县为研究区域,对该地区2016—2018年发生的沙尘暴天气资料以及气象因子(气温、风速、湿度、气压、水汽压、日照时数)和大气污染物(PM2.5、PM10、SO2、NO2、CO、O3)进行分析。结果表明,墨玉县沙尘暴天气主要发生在春夏季(3—8月),平均占全年发生频率的77.12%。墨玉县沙尘暴强度主要由气象因子决定,特别是气温、风速、日照时数和湿度。沙尘暴强度与大气颗粒物(PM10和PM2.5)存在着明显的间接关系,主要因为两者均受风速影响较大,沙尘暴强度越大,大气中PM10和PM2.5浓度越高。沙尘暴强度与SO2、NO2、CO、O3等大气污染物的关系非常微弱,但O3与沙尘暴的形成季节比较一致。  相似文献   

3.
高交通密度道路周边乔灌草型绿地对大气颗粒物的影响   总被引:1,自引:0,他引:1  
在杭州临安一高交通密度道路周边的乔灌草型绿地中监测了PM1浓度、PM2.5浓度、PM10浓度、温度、湿度、风速、气压、CO2浓度,研究了颗粒物的日变化规律、乔灌草群落对其的消减影响及与气象因子的关系。结果表明:(1)不同粒径的大气颗粒物PM1、PM2.5、PM10的日变化特征一致,表现为"早晚高、中午低"的现象,3者与同一气象因子的决定系数基本相同;(2)道路两边的绿地宽度并不一定越宽越好,还应考虑植物种类的配置结构、植被密集程度及经济性;(3)大气颗粒物浓度与温度、风速成负相关关系,与湿度、气压成正相关关系,其中风速是影响颗粒物浓度的最关键气象因子。  相似文献   

4.
为了解烟花爆竹燃放对保定市大气污染特征的影响,于2018年春节期间对保定市不同监测站点PM 2.5中水溶性离子、有机碳(OC)、元素碳(EC)的污染特征进行了分析.结果表明:(1)春节期间保定市PM2.5最大值为588μg/m3,水溶性离子浓度排序为NO3->SO2-4>Cl->NH4+>K+>Mg2+>Na+>Ca2...  相似文献   

5.
揭示空气重污染红色预警期间污染物与气象因子的变化特征对空气质量预报和污染减排措施评估具有重要参考价值。利用大气污染和气象观测资料,研究了北京2015年11-12月空气重污染红色预警时期污染物浓度、气候特征及气象因子对空气质量影响。结果表明,PM2.5在大气颗粒物中占有较大比重,为首要空气污染物;在重污染峰值时段,城郊PM2.5与PM10比值(R)相差不大,可达0.9以上,空气呈均匀混合的高PM2.5浓度特征,而空气质量较好时城区R值明显高于郊区;研究时段气候特征与历史同期相比有明显差异,其中平均风速偏小19%,平均气温偏高0.23 ℃,气温日较差减小,而多次小型降水增加了空气湿度,导致相对湿度值偏高40%,垂直方向上的逆温层或等温层则加剧了空气重污染的形成和发展,重污染过程中的红色预警措施明显降低了颗粒物浓度;风速与污染物浓度呈指数相关,城郊风速分别低于2.0和2.5 m·s-1时,空气质量较差、污染物浓度随风速升高快速下降,而当城郊风速大于2.0和2.5 m·s-1时变化特征则相反;相对湿度与污染物浓度呈幂相关,相对湿度在65%左右为空气质量特征发生变化的转折点;由于气温日较差存在季节变化,其与空气质量相关关系不太显著。  相似文献   

6.
分析了2013年1—3月西安市12个空气监测子站监测的PM10、PM2.5以及相关气象参数;绘制了不同月的主城区浓度分布等值线图。运用单样本K-S非参数检验法检验表明,PM2.5浓度符合对数正态分布;各站点间的PM2.5浓度相关性非常高,变化趋势一致;PM10和PM2.5的变化规律呈现"W"型三峰分布;PM2.5日均值与能见度、净辐射量、平均气温、最高气温、最低气温均呈现显著负相关,且相关性较强;与平均湿度、最大湿度、最小湿度呈现显著正相关;与总辐射量、日照时数、气压、露点温度的相关性较弱;节日烟花燃放、沙尘天气容易造成严重大气污染,其中节日烟花燃放、沙尘天气对PM10的贡献量大于对PM2.5的贡献。  相似文献   

7.
浙江大气PM2.5污染问题突出。利用国家环境空气质量监测站的实时在线监测数据分析了2013年12月上旬长三角地区一次大气PM2.5严重污染前后浙江典型城市(杭州、湖州、金华、宁波和舟山)的PM2.5污染成因。结果表明,严重污染天(SPD)风速和大气边界层高度均较非污染天低,不利于污染物扩散,而气温和相对湿度高,易于二次颗粒物生成。PM2.5/CO(质量比)的变化结果显示,SPD二次颗粒物对杭州、宁波、舟山PM2.5浓度的贡献高于60%,对湖州和金华PM2.5浓度的贡献略低(42%~54%)。杭州SPD时二次NO3-、SO24-、NH4+的增长幅度远高于PM2.5,且氮转化率和硫转化率随相对湿度的升高而上升,表明硫酸盐和硝酸盐的生成是PM2.5污染的重要来源。气团后向轨迹显示,SPD时杭州和湖州主要受江苏、安徽及浙江省内其他城市气团传输的影响,宁波和舟山主要受上海、江苏、安徽及东海上空气团传输的影响,而金华主要受本地及邻近的杭州、绍兴的影响。  相似文献   

8.
为评估2019年春节期间重庆市烟花爆竹禁放政策的实施效果,利用2015—2019年春节期间的空气质量自动监测数据及在线水溶性离子监测数据等资料,并采用烟花爆竹影响分级、PM_(2.5)/CO法等方法,估算了除夕夜烟花爆竹燃放对重庆市各监测站点的影响。结果表明,2019年重庆市烟花爆竹禁放后,空气质量明显好于往年。主城区优良天数为近5年春节期间最多,PM_(2.5)平均浓度为近5年最低,除夕夜PM_(2.5)和PM_(10)最大峰值同比分别下降72.8%和74.1%,且烟花污染的强示踪组分K~+、Mg~(2+)、Cl~-等也没有出现明显陡升,有近一半的监测站点空气质量基本未受烟花爆竹影响。  相似文献   

9.
2015年2月16—28日,采用APS-3321空气动力学粒径谱仪在天津市环境监测中心站连续监测0.5~10 μm间不同粒径大气颗粒物数浓度,并同步记录气象参数,研究了大气颗粒物的数浓度变化和粒径分布特征,运用Spearman统计分析方法初步探讨了气象因素对大气颗粒物数浓度的影响。结果表明,该地区大气颗粒物5 min平均数浓度为285 个·cm-3,其中0.5~1.0 μm粒径颗粒物对总粒子数浓度贡献较大,约占96.7%。观测期间共出现颗粒物数浓度显著增高的9个污染事件,不同粒径中污染事件颗粒物数浓度最大值的主导气象因素不同:对于0.5~1.0 μm,其与相对湿度呈明显的正相关性;对于1.0~2.5 μm,其与气象因素无明显相关性;对于2.5~10 μm,其与相对湿度呈明显负相关性、与风速呈明显正相关性。颗粒物数浓度受气象条件影响较大,其中相对湿度影响最为显著,当相对湿度小于70%时,颗粒物数浓度随着湿度的增加而增加;当相对湿度大于70%时,颗粒物数浓度随着湿度的增加而减少。此外,烟花爆竹燃放对颗粒物数浓度短暂上升贡献突出,主要集中在0.5~1.0 μm粒径的亚微米颗粒物。  相似文献   

10.
分析了2015年南京市PM2.5和PM10的浓度特征和大致来源类型。PM2.5和PM10的年均浓度分别为56.6 μg·m-3和96.5 μg·m-3,污染水平较高。颗粒物浓度的季节变化特征一致:冬 > 春 > 秋 > 夏;PM2.5的日变化呈"单峰单谷"型,而PM10的呈"单峰双谷"型。颗粒物浓度在城区高于郊区;植被茂盛区域的浓度较低。对PM2.5/PM10而言,比值在冬季和梅雨期较大,分别受取暖和降水的影响;比值在春季和夏末秋初较小,分别受沙尘和秸秆焚烧的影响。PM2.5多为二次颗粒物,PM10多为一次颗粒物;固定污染源对PM2.5的间接贡献和对PM10的直接贡献较移动污染源而言更大。  相似文献   

11.
北京春节期间大气颗粒物污染及影响   总被引:13,自引:0,他引:13  
利用2006年春节期间的大气颗粒物浓度及粒径谱分布资料,结合大气能见度及NO2监测数据,分析了北京市鞭炮燃放禁改限后大气颗粒物污染的变化规律,以及对大气消光作用的影响.结果表明:春节期间特别是除夕夜大量鞭炮的集中燃放导致了大气颗粒物浓度的急剧升高,主要以细粒子为主;颗粒物浓度的升高致使大气能见度明显降低,鞭炮燃放最集中的时段,能见度低于2 km;燃放鞭炮产生的颗粒物是造成大气消光作用的主要因素.估算了北京市鞭炮燃放的颗粒物排放量,2006年除夕0:00~1:00市区排放了大约3.0×104kg PM10,官园监测点PM10小时最高质量浓度超过了800 μg/m3.元宵节夜间燃放鞭炮产生的颗粒物半衰期为2.4 h.  相似文献   

12.
基于粤港澳珠三角洲空气质量监测数据,利用克里金插值法和Spearman秩系数相关法分析了2015—2021年大湾区空气污染物的时空分布特征,利用灰色关联分析法分析了自然、社会因素对空气污染物的影响。结果表明,近7年大湾区的空气质量整体向好,PM10、PM2.5年均值分别为40.32、23.38$ \mathrm{\mu } $g·m−3,均低于新标准二级限值,O3、NO2、SO2年均值分别为51.68、33.45和6.61$ \mathrm{\mu } $g·m−3。其中,SO2质量浓度低于新标准一级限值,CO年均值为0.68$ \mathrm{m} $g·m-3,CO、PM2.5、NO2、PM10和SO2年均质量浓度呈下降趋势,降幅分别为23.67%、39.48%、27.02%、33.75%和41.21%,季节上表现为冬季最高、春秋季次之、夏季最低。O3年均质量浓度呈波浪上升趋势,升幅为14.54%,季节变化为:秋季>春季>冬季>夏季,O3质量浓度升高的原因可能是副热带高气压带和台风外围的大气环流形式等不利气象条件和O3前体物高排放逐渐升高等人为排放因素等共同影响的结果。O3的空间分布表现为东莞、深圳、港澳和江门南部等东部沿海地区高于中西部内陆地区,高值质量浓度达48~70 μg·m−3,其他污染物质量浓度呈“中西—东部”递减趋势。气温、日照时数和风速与CO、NO2、PM10、PM2.5和SO2质量浓度呈负相关,与O3 呈正相关,相对湿度与O3呈负相关,与其他污染物呈正相关,降水量对珠港澳三地污染物质量浓度影响不一。能源消耗、工业生产、人口和机动车数据等是影响大湾区空气质量的主要因素。本研究结果可为粤港澳大湾区在大气污染防治、环保策略制定等方面提供参考。  相似文献   

13.
为了研究大气中PM2.5污染特征以及其随时间变化规律,基于西安市2013年1月—2014年4月间SO2、NO2、CO、O3、日最高温度(Tmax)、日最低温度(Tmin)、PM2.5、PM10等因素的监测数据.运用统计学原理和多元回归分析方法,分析了PM2.5的污染特征及相关因素对其产生的贡献度,进一步建立了四季的最优多元回归模型.研究结果表明,西安市年平均质量浓度124.9 μg/m3,四季的平均污染浓度从大到小依次为冬、春、秋、夏;春夏两季贡献较大的为SO2、CO;秋冬两季贡献较大的为NO2、CO;最终建立的模型的相关系数较高,模型很好地拟合了冬春两季PM2.5变化趋势,能较准确地反映了西安市PM2.5的污染特征,具有一定的理论和实用价值.  相似文献   

14.
为了研究哈尔滨市大气污染特征以及气象要素对大气污染的影响,对哈尔滨市2013年采暖期及非采暖期内4种大气污染物(二氧化硫SO2、二氧化氮NO2、可吸入颗粒物PM10、细颗粒物PM2.5)日均浓度分布特征以及日均浓度与部分地面气象要素(风速、气温、气压、相对湿度)相关性进行研究.提出哈尔滨市4种大气污染物日均浓度均符合对数正态分布.采暖期和非采暖期内4种大气污染物浓度与地面气象要素的相关性存在显著差异.采暖期内,4种污染物浓度与风速显著负相关,与风速相关系数最高达-0.639;与气压和相对湿度正相关.非采暖期内,4种大气污染物均与相对湿度呈负相关,相关系数为-0.5左右,与其他3种气象要素相关性普遍不高.全年4种污染物中仅有SO2与气温呈较好负相关,相关系数为-0.4.  相似文献   

15.
2015年8月23日—9月4日京津冀地区对部分污染源实行了临时性的减排管控措施,为保障9月3日北京大阅兵的空气质量起到了重要作用。天津作为协同减排的重要城市,阅兵期间空气质量变化一直备受关注。为评估这次减排管控措施对空气质量的改善效果,于2015年8月10日—9月15日,选择天津市气象局院内观测场,利用自动在线观测仪器对大气污染物NOx、SO2、CO、O3及PM2.5进行了连续观测,以天津所采取的临时减排措施为时间节点,对人为管控前后污染物的浓度水平、源贡献及日变化特征进行了比对分析,并结合气团输送特征讨论了气象条件在各时段的贡献。结果显示:在减排期间(2015年8月23日—9月4日),NO、NO2、SO2、CO、O3及PM2.5浓度较减排前(2015年8月10日—22日)分别降低了12.3%、34.1%、41.8%、21.1%、39.0%及63.1%,燃煤、工业及扬尘源控制效果显著;减排后(2015年9月5日—15日)较减排期,NO、NO2、SO2、CO及PM2.5浓度分别升高了77.2%、46.1%、13.3%、12.5%和11.5%,空气质量主要受机动车源的影响。NO2、SO2、CO及PM2.5在各时段的日变化基本呈早晚双峰型,NO呈早单峰型,O3呈午后单峰型,减排措施有效降低了峰值和浓度水平,污染物排放至大气后,近地面气象要素也会有所影响。由气团的输送特征可知,有利的气象条件也是减排期间良好空气质量的重要因素,减排后CO、SO2和PM2.5无显著回升主要得益于清洁气团的频繁出现。  相似文献   

16.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

17.
为探究人为因素和气象因素对道路区域PM_(2.5)浓度的影响,选择南京仙林大学城某条典型道路开展大气PM_(2.5)监测实验。结果表明,道路清扫抬升PM_(2.5)浓度,白天的抬升作用较傍晚和夜间更加显著。各类交通流对道路区域PM_(2.5)浓度的影响程度排序为:柴油车汽油车燃气车道路行人。PM_(2.5)浓度阴天高于晴天和多云天,霾日(209.3、80.5μg/m~3)高于非霾日(47.0、62.0μg/m~3);在霾日变化特征各异,在非霾日均呈"三峰"分布特征。非霾日,道路区域PM_(2.5)浓度的高值区与相对湿度的高值区,温度、风速的低值区重合;PM_(2.5)浓度的低值区与相对湿度的低值区,温度、风速的高值区重合。温度与PM_(2.5)浓度呈负相关(r=-0.501,P0.05),是影响PM_(2.5)污染程度的关键气象因子。由此可见,道路清扫、交通流和各类气象因素对道路区域PM_(2.5)浓度影响显著。  相似文献   

18.
为研究唐山市新冠肺炎防疫期间环境空气质量变化特征以及形成重污染的成因,分析了2020年1月1日至2月29日的PM_(10)、PM_(2.5)、SO_2、NO、NO_2、CO、PM_(2.5)组分(有机碳(OC)、元素碳(EC)、重金属等)和气象数据。结果表明,防疫期间空气质量整体改善,相比正常生产期间除CO浓度均值未变化,其他参数均呈下降趋势,其中NO、NO_2浓度降幅最大,分别降低73%和41%,受车流量减少影响显著。防疫期间的2月9—13日出现1次连续5天的重污染过程,相比正常生产期间PM_(10)、PM_(2.5)和CO浓度分别增长了69%、104%和95%,Fe浓度增加57%,呈钢铁型污染特征;该时段相对湿度和风速分别为80.2%、0.7m/s,为高湿低风速气象条件,二次无机盐(SNA,包括NH_4~+、NO_3~-、SO_4~(2-))在PM_(2.5)中占比为64%,比正常生产期间高31%,此次污染过程受本地工业大气污染物排放累积以及二次生成共同影响。  相似文献   

19.
济南市大气水平能见度与环境污染相关性分析   总被引:1,自引:0,他引:1  
利用济南市2011年1月1日至12月31日大气水平能见度在线监测小时数据和对应细颗粒物(PM2.5)、PM2.5中碳组分(EC和OC)、挥发性有机物(VOC)及气象参数资料,分析污染物、气象参数等对能见度的影响。结果显示,相对湿度和PM2.5是影响能见度的主要因子,能见度与相对湿度及PM2.5浓度主要呈指对数关系。结合相对湿度条件对PM2.5浓度与能见度关系进行综合分析,得到相关经验模型公式,并利用2010年6月1日至11月30日的相应数据资料进行实例关系验证,结果表明,建立的经验模型公式有较好的实际应用价值。  相似文献   

20.
当前细颗粒物PM2.5已成为城市环境的主要污染物,研究城市不对称街谷内PM2.5浓度的垂直分布特征,对居民日常生活与健康出行有现实意义。实验选取2013年3个不同阶段对高度在1~35 m范围的街谷进行PM2.5浓度监测,同时引用街谷内流场模型与浓度场模型,对PM2.5浓度垂直分布特征及成因进行探究。结果表明,不对称街谷受大气对流、风速、风向影响,街谷内细颗粒物存在不均匀分布特点,在较高侧随着壁面高度的增加PM2.5浓度大体呈"S"型曲线变化。同时在同一阶段监测的4天中街谷内PM2.5浓度分布特征大体一致,而阶段之间差异明显;街谷内PM2.5浓度垂直分布的最高浓度差出现在阶段1,高达75μg/m3,阶段2与阶段3浓度差相对减弱,仅在20~30μg/m3之间。通过阶段2与阶段3对比可知,北京冬季供暖燃煤对大气细颗粒物的贡献较大,导致颗粒物浓度偏高;而非采暖期气温回升,大气对流作用较强,有助于大气颗粒物扩散,因而街谷内PM2.5污染程度相对较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号