首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究吸附剂对正态磷酸盐、非正态磷酸盐的吸附特征,以及正态磷酸盐和非正态磷酸盐混合体系下的竞争吸附行为,制备出3种改性蒙脱石SWy-焙烧、SWy-Al、SWy-Fe,将其分别用于对不同形态的磷酸盐吸附实验中。结果表明,制备的3种改性蒙脱石对磷的吸附效果均有所提升。SWy-Fe的吸附效果最佳,对正态磷酸盐和非正态磷酸盐4 h吸附去除率分别提高了56.1%和55.3%,实验结果符合Ho拟二级吸附动力学方程。根据Langmuir吸附热力学方程,对正态磷酸盐和非正态磷酸盐的饱和吸附量分别为21.9 mg·g~(-1)和18.8 mg·g~(-1)。此外,在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系中的非正态磷酸盐吸附量显著高于正态磷酸盐,二者单位平衡吸附量之比为2.9∶1.0。改性蒙脱石对正态磷酸盐和非正态磷酸盐的吸附结果均表现为吸附外部液膜扩散、表面吸附、颗粒内扩散等多种过程的综合作用,可交换阳离子Ca~(2+)/Fe~(3+)/Al~(3+)的引入通过吸附络合作用提高了蒙脱石对磷酸盐的吸附能力。在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系存在吸附竞争现象,这为实际处理含磷废水吸附技术的发展和应用提供了理论依据。  相似文献   

2.
为探究Na型粉末树脂回收废水中低浓度氨氮的可行性,分别采用静态摇瓶与动态树脂柱方法进行实验研究。结果表明:预处理仅使粉末树脂吸附氨氮的能力降低了5%;在中性与酸性条件下,Na型粉末树脂对低浓度氨氮去除率均可达到99%;每增加2 g·L~(-1)树脂投加量,氨氮去除率会提高20%,但吸附容量下降2.85 mg·g~(-1);钙镁离子的存在会降低Na型粉末树脂对氨氮的吸附容量,最大降低量为3.5 mg·g~(-1);由于钾离子与氨氮为同价离子,其影响不显著。Na型粉末树脂对氨氮的吸附符合Langmuir吸附等温线,吸附过程符合准二级动力学。根据实验结果,Na型粉末树脂静态运行方式适用于低浓度氨氮的回收,但动态运行方式下粉末树脂达到吸附饱和时间更短,因此,需要对运行方式进一步研究。  相似文献   

3.
采用模拟废水,在UASB反应器中研究磷酸盐对厌氧氨氧化(Anammox)工艺的长期影响,考察了厌氧氨氧化反应器处理高磷酸盐、高浓度含氮废水的可行性。结果表明:当磷酸盐在进水中的浓度低于750 mg·L~(-1)(25.8 mmol·L~(-1))时,Anammox工艺的脱氮效果较好,且磷酸盐浓度对废水中氮的去除及转化效果影响不大,当磷酸盐浓度增至800 mg·L~(-1)(25.8 mmol·L~(-1))时,Anammox工艺的脱氮性能被抑制,NH+4-N的去除率从96.5%降至74.1%,NO-2-N从97.8%降至75.6%,NRR(nitrogen removal rate)从5.7 kg·(m3·d)-1降至4.4 kg·(m3·d)-1。停止投加磷酸盐后,反应器的脱氮性能得到快速恢复。  相似文献   

4.
为解决屠宰废水的高氨氮问题,在2 L SBBR中添加Fe~(3+)对模拟屠宰废水进行脱氮处理。在室温条件下,研究了不同浓度Fe~(3+)对NH_4~+-N、N O_2~--N、NO_3~--N、COD、同步硝化反硝化速率(ESND)、微生物群落分布的影响。结果表明,曝气量为0.6 L·min~(-1),HRT为12 h,Fe~(3+)质量浓度为10 mg·L~(-1)时,NH_4~+-N、COD和TN去除率分别为94%、97%和89.28%。N O_3~--N含量小于5 mg·L~(-1),NO2~--N含量接近0 mg·L~(-1),ESND平均值可达93.91%,比对照组高5.24%。Fe~(3+)提高了微生物抗低温冲击性,加快了同步硝化反硝化速率。高浓度的Fe~(3+)(30~50 mg·L~(-1))会产生生物毒性,抑制生物脱氮。SEM及显微镜观察发现,含有10 mg·L~(-1) Fe~(3+)的体系减少了生物质流失,微生物种类丰富,体系脱氮性能得到有效提升。  相似文献   

5.
机械蒸汽压缩(MVC)蒸发处理渗滤液过程中,Ca~(2+)和Mg~(2+)的大量存在会导致结垢及浓缩液后续处理困难等问题。通过静态吸附实验,探索了732型阳离子交换树脂对渗滤液中Ca~(2+)、Mg~(2+)的吸附特性。实验结果表明,在pH=7、温度为30℃、732型阳离子交换树脂投加量为8g/L、吸附时间为30 min的条件下,对于Ca~(2+)和Mg~(2+)(摩尔比为3∶5)的质量浓度为2 000mg/L的混合溶液,两者的去除率分别为88.8%、68.3%。732型阳离子交换树脂对Ca~(2+)和Mg~(2+)的吸附行为均符合Langmuir吸附等温方程,相关性系数(R2)分别为0.992 5、0.952 3。利用732型阳离子交换树脂处理实际渗滤液,吸附条件与混合溶液相同,结果表明,对实际渗滤液中Ca~(2+)和Mg~(2+)的去除率分别达到为69.9%、70.9%。经过732型阳离子交换树脂吸附预处理后的渗滤液再经MVC蒸发处理,可有效减少MVC蒸发过程中的结垢,并降低浓缩液后续处理成本。  相似文献   

6.
采用DAX-8树脂和732氢型阳离子交换树脂将山口湖沉积物中溶解性有机氮(DON)分成亲水组分和疏水组分,在室内培养条件下,研究了其对羊角月牙藻的可利用性。结果表明:通过DAX-8树脂后,N4和N14沉积物DON回收率分别为98.96%和104.34%。原水和亲水DON组分通过阳离子交换树脂后会吸附类蛋白物质,降低藻类生物量。培养过程中,N4原水和亲水组分DON消耗量分别为0.34 mg·L~(-1)和0.36 mg·L~(-1),低于N14原水和亲水组分DON消耗量0.94mg·L~(-1)和0.82 mg·L~(-1),表明N14亲水组分藻类可利用较N4亲水组分多。由于阳离子交换树脂对N4原水和亲水组中DON去除率较高,其藻类的生物量低于N14原水组和亲水组。N4疏水性组分DON的利用量和藻细胞生物量分别为0.80mg·L~(-1)和15×104个·m L~(-1),高于N14组,这是因为N4接收了长水河农场生活污水和周围农田径流中易降解DON。利用PARAFAC模型对培养过程中三维荧光光谱数据解析出1种类蛋白物质和2种类腐殖质物质。培养初期,类蛋白物质先被藻类所利用导致其含量降低,而随着藻类生长进入对数期,释放到水体中类蛋白物质导致其相对荧光强度的增加。在整个培养过程中,类腐殖质物质相对荧光强度的增加主要来源于死亡藻类的释放。  相似文献   

7.
以酒糟生物碳为原料,采用负载Al(OH)_3改性制得生物吸附剂(CDGB)。通过静态吸附实验研究吸附剂用量、初始浓度、吸附时间、pH值和共存离子对CDGB吸附氟能力的影响。结果表明:CDGB具有非常宽的最适pH值范围,在pH值为5.0~9.0范围内CDGB均能有效地去除饮用水中的氟离子;并且在氟初始浓度为10 mg·L~(-1),吸附时间40 min,CDGB的添加量为2 g·L~(-1)时氟的去除率可达90%以上,且吸附后水中氟离子含量低于1 mg·L~(-1),符合国家饮用水标准;溶液中常见的共存离子(硝酸根、氯离子和硫酸根)对吸附剂吸附没有显著影响;CDGB对氟离子吸附过程符合Langmuir吸附等温线模型和伪二级吸附动力学模型,理论饱和吸附容量为18.05 mg·g~(-1)。  相似文献   

8.
微生物燃料电池(microbial fuel cells,MFC)可用于处理有机废水并同时处理污水中的重金属。为了对MFC处理含铜废水进行优化,采用了KMnO_4-MFC与Cu-MFC串联,通过前者产生的较高电压对后者处理含铜废水过程提供电压和功率的补给并获得额外电能,结果表明,KMnO_4-MFC在KMnO_4浓度为0.5、1、2 g·L~(-1)时输出最大功率密度分别为288、433、700 mW·m~(-2),而Cu-MFC在Cu~(2+)浓度为10 mg·L~(-1)时最大功率密度仅为218.75 mW·m~(-2),二者串联能够明显加快Cu-MFC对Cu~(2+)的回收速率,串联时Cu~(2+)的回收率可达98%,24 h回收率可达91.7%,与单独Cu-MFC相比速率提高1倍。串联后,该种方法在加速铜回收过程的同时还能获得额外的电能,其最高输出功率可达143 mW。  相似文献   

9.
考察投药量、水力负荷、停留时间等因素,对诱导结晶反应器去除Cu~(2+)、Zn~(2+)效果的影响,确定最佳运行参数为:水力负荷40 m~3·(m~2·h)~(-1),结晶药剂投药量2∶1,停留时间90 min。在最佳运行参数下,结晶反应器处理含铜20 mg·L~(-1),含锌10 mg·L~(-1)、pH为5.5~6.0的混合重金属废水。反应器连续运行40 d,出水中铜离子和锌离子平均浓度分别为1.31 mg·L~(-1)和4.57 mg·L~(-1),铜离子和锌离子平均去除率分别是93.4%和51.3%。诱晶载体粒径由0.568 mm长至0.617 mm,平均生长速度为0.001 23 mm·d-1。研究表明,该诱导结晶工艺可以用作同时去除废水中的Cu~(2+)、Zn2+。  相似文献   

10.
采用壳聚糖与Fe_3O_4对硅藻土进行混合改性,制备出一种吸附效果好、且能从液相中磁分离的新型复合吸附剂。通过SEM、XRD、VSM和FTIR等手段对其进行表征,并探究溶液pH、吸附剂投加量以及吸附温度等条件对水溶液中Pb~(2+)吸附效果的影响。结果表明:壳聚糖和Fe_3O_4都能够负载到硅藻土上面。当溶液pH为5、吸附剂投加量为10 g·L~(-1)、初始浓度为10 mg·L~(-1)时,Pb~(2+)去除率可以达到96.4%。吸附过程较好地符合假二级动力学模型和Langmuir吸附等温模型,热力学数据说明该吸附是吸热、自发的过程。  相似文献   

11.
将谷売生物炭用酸改性后负载磁性Fe_3O_4,得到一种新的吸附材料(BC~Fe)。通过单因素吸附实验,研究了时间、pH、添加量、浓度以及温度等参数对BCTe吸附废水中Pb~(2+)的影响,并对其进行比表面积及傅里叶红外光谱分析,探讨该磁性生物炭对Pb~(2+)的吸附机理。结果表明对Pb~(2+)的吸附能在2 h内基本达到平衡。在Pb~(2+)溶液初始浓度为100mg·L~(-1),pH=5.0温度为25℃,分別添加0.1g和0.15 g的BC-Fe于50 mL Pb~(2+)溶液中,单位质量的BC-Fe对溶液中Pb~(2+)的吸附量分别为40.6 mg·g~(-1)和33.2 mg·g~(-1)去除率分别为81.3%和99.9%。该吸附过程符合拟二级动力学模型,理论平衡吸附量为43.9 mg·g~(-1)。用Langmuir等温吸附方程能够很好地描述其吸附行为;热力学研究表明对Pb~(2+)的吸附过程是自发的吸热过程。  相似文献   

12.
针对多组分煤矿酸性废水(ACMD)污染严重、治理费用高的特点,采用PVA—硼酸包埋交联法制作以硫酸盐还原菌(SRB)和盐改性麦饭石为主体的固定化颗粒,依据不同水力负荷和污染负荷构造3组动态柱,对固定化颗粒进行水力条件适应性实验研究。结果表明,固定化颗粒在低水力负荷0.085 m3·(m~2·d)-1,水力停留时间32.495 h下运行效果较好,SO_4~(2-)和Mn~(2+)去除率分别为65.90%和37.65%,出水COD浓度635.06 mg·L~(-1),总铁元素TFe释放量4.03 mg·L~(-1),出水pH 6.94。提高污染物SO_4~(2-)和Mn~(2+)浓度到(2 657±96)mg·L~(-1)和(13.33±1.75)mg·L~(-1),SO_4~(2-)和Mn~(2+)去除率仍可达40.07%和20.52%,出水COD浓度64.07 mg·L~(-1),总铁元素TFe释放量2.69 mg·L~(-1),出水pH为7.38,综合处理效果较好,颗粒对高浓度污染物适应性较强,具有一定抗冲击负荷能力。  相似文献   

13.
以生物质废弃物柚子皮为主要原料,通过在柚子皮粉中加入FeCl_3进行改性,将该改性产物用于吸附去除废水中的Cr~(6+)。该改性柚子皮的制备条件为柚子皮粉∶FeCl_3质量比为100∶1,常温下加水混合均匀,在(85±2)℃条件下烘24 h后粉碎。当水中Cr~(6+)离子浓度为5 mg·L~(-1),pH值为6.3,吸附剂投加量为3 g·L~(-1),吸附反应温度为10℃的条件下,吸附反应1 h后达到平衡,吸附效率为97%以上。该吸附反应符合Langmuir等温方程,反应主要机理包括物理吸附、化学吸附、络合作用、絮凝作用、共沉淀作用等。研究表明,该改性吸附材料可自动调节废水pH值,成本低廉,操作简单,效果好,无二次污染,适合处理低浓度含铬废水,有利于生物质废弃物的资源化利用。  相似文献   

14.
杨朗  李志丰 《环境工程学报》2012,6(8):2715-2719
分别研究了沸石的等温吸附模型,改性沸石在交换柱中的穿透与再生,通过化学沉淀法对再生废液中氨氮的回收等。结果显示:60~80目单位重量天然斜发沸石对氨氮的饱和交换容量为4.15 mg/g;30 mg/L的氨氮废水经过交换柱后沸石的穿透吸附容量和平衡吸附容量分别为:4.50 mg/g和4.757 mg/g。化学再生后,用化学沉淀法使再生废液中氨氮由202 mg/L降到16.3 mg/L。  相似文献   

15.
为探讨高效选择性回收污泥厌氧消化液中磷的离子交换方法,采用静态实验和动态实验研究了4种阴离子交换树脂(D213、D202、D301和DSQ)的磷回收性能,筛选了适合富磷污泥厌氧消化液选择性磷回收的高交换容量树脂。实验结果表明,D213、D202、D301和DSQ 4种树脂对正磷浓度为70 mg/L的厌氧消化液进行动态处理时,其最大穿透体积分别为3、7、17和90 BV;DSQ树脂磷交换容量远高于其他3种树脂,达到6 860 mg P/L湿树脂,是目前报道的高磷交换容量树脂的3~4倍;DSQ树脂能有效地抵抗厌氧消化液中有机质和硫酸根等阴离子的干扰;用NaOH溶液再生DSQ树脂并回收磷,磷洗脱率超过96%,洗脱液是高浓度含磷液,可作为磷矿石的优质替代品。研究表明,DSQ树脂是一种高效选择性分离磷的树脂,适用于污泥厌氧消化液的磷回收。  相似文献   

16.
在分析高钙粉煤灰(HCFA)对模拟废水脱氮除磷特性的基础上,先后采用氧化镁烟气脱硫废渣(MFGDR)、烟气脱硫(硫酸镁)废水和HCFA综合处理酸洗磷化废水和垃圾渗滤液。当酸洗磷化废水和垃圾渗滤液混合废水的NH3-N浓度为1 135 mg·L~(-1)、PO3-4-P浓度为2 766 mg·L~(-1)时,通过调整氮磷比,经过吸附、化学沉淀反应等,将污染物吸附、转化为磷酸铵镁等,并进行固液分离,NH3-N和PO3-4P的去除率分别可达到98%和99%,废水经处理可达到排放标准。不仅同步解决了热电固废、硫酸镁废水、酸洗磷化废水以及垃圾渗滤液的处理处置问题,还以废治废,降低了药剂成本,具有良好的应用前景。  相似文献   

17.
粉煤灰提取氧化铝是粉煤灰高值化利用的重要方向。通过在粉煤灰酸浸液中加入硫酸铵形成常温下可结晶的十二水硫酸铝铵晶体(NH_4Al(SO_4)_2·12H_2O),从而实现铝盐的高效分离。考察了结晶温度、NH_4~-/Al~(3+)摩尔比,初始Al~(3+)浓度等因素对铝回收及NH_4Al(SO_4)_2·12H_2O结晶的影响;利用电感耦合等离子光谱仪(ICP)和X射线衍射仪(XRD)对晶体中的杂质含量及晶体组成进行了分析。结果表明,随着结晶温度的升高,铝回收率显著下降,但晶体纯度升高;铝回收率和晶体纯度均随着NH_4~-/Al~(3+)摩尔比的增加而增加;较高的初始Al~(3+)浓度可促进铝的回收和晶体纯度的提高。对十二水硫酸铝铵的结晶过程进行优化,结果表明,在结晶温度为15℃;NH_4~-/Al~(3+)摩尔比为1.0~1.5;初始Al~(3+)浓度为0.88 mol/L时,铝的回收率可达74%,十二水硫酸铝铵纯度在90%以上。  相似文献   

18.
利用尿素和乙二胺四乙酸钠盐通过一步法低温固相裂解合成了二维纳米碳氮材料(2-D CN_x),实现了对水中重金属离子的吸附去除。系统地研究了2-D CN_x对水中重金属离子Cd~(2+)、Pb~(2+)和Cu~(2+)的吸附性能,其吸附动力学过程均符合准二级动力学模型,吸附等温线更符合Langmuir模型。结果表明:Cd~(2+)、Cu~(2+)和Pb~(2+)的初始浓度均为40 mg·L~(-1),在25℃下,达到平衡时吸附量分别达到了79.4、 58.5、 72.8 mg·g~(-1); 2-D CN_x在比较广泛的pH范围(3.0~9.0)内对重金属离子都具有比较好的吸附效果;吸附剂在吸附柱过滤穿透实验中表现出很好的吸附效果和可重复利用性,且具有良好的机械稳定性。进一步的机理分析探明,吸附主要基于材料表面的羟基和重金属离子交换及氨基与重金属离子的络合协同作用。  相似文献   

19.
以屠宰场废弃动物血液为原料,经高温干燥、粉碎为血粉,以此血粉为吸附剂,研究血粉添加量、溶液初始浓度、吸附温度、溶液pH、吸附时间对废水中Cd2+吸附量与去除率的影响。结果表明,在25℃、pH=5时,4 g血粉对初始浓度为20mg·L~(-1)的镉离子溶液(100 m L)振荡吸附2 h后,溶液中剩余镉离子浓度为0.1 mg·L~(-1),Cd2+的去除率为99.38%,达到污水综合排放标准(GB 8978-1996)中镉排放限值0.1 mg·L~(-1);血粉对镉离子的吸附反应符合Langmuir等温吸附方程,可决系数为0.999 7,Cd2+的理论饱和吸附量为10.24 mg·g-1。为了使剩余Cd2+浓度达到更低(电镀废水排放标准),在吸附工艺上设计出2步吸附法,即第1次吸附后的混合液进行过滤,再将滤液加1 g血粉进行第2次吸附。结果表明,2步吸附法大大降低了溶液中剩余Cd2+离子浓度,即经过第1步、第2步吸附后,溶液中剩余Cd2+离子浓度降至0.006 mg·L~(-1),达到或低于电镀污染物排放标准(GB 21900-2008)对Cd2+的排放限值(0.05 mg·L~(-1))。这是常规吸附剂活性炭、石英砂、高岭土等所不能达到的技术指标,为废水去除Cd2+提供了一种可能的新技术。  相似文献   

20.
硫化锰纳米颗粒高效去除重金属镉   总被引:1,自引:0,他引:1  
中国镉污染问题日益严峻,开发高效的镉吸附剂,是解决环境镉污染问题的重要技术手段。采用共沉淀方法合成了硫化锰纳米颗粒,研究了其对重金属镉的吸附行为,并采用X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HR-TEM)、比表面积(BET)等技术手段探究了硫化锰纳米颗粒的形貌、化学组分以及镉的去除机制。结果表明,MnS纳米颗粒呈球状,平均粒径100 nm,比表面积30.56 m~2·g~(-1)。MnS纳米颗粒对Cd~(2+)的吸附动力学数据较好地符合伪二级动力学模型;吸附等温线数据较好地符合Langmuir模型,说明MnS对Cd2+的吸附是以化学吸附为主的单分子层吸附。使用Langmuir拟合的MnS饱和最大镉吸附量为349.6 mg·g~(-1),在众多镉吸附材料中处于前列。对于模拟工厂重金属废水的处理,MnS纳米颗粒可以在5 h内使镉的浓度由60 mg·L~(-1)降至国家规定排放线以下(0.1 mg·L~(-1)),且吸附过程中水体pH稳定,对水体干扰小。在多种重金属离子共存的情况下,仍可以达到接近100%的Cd~(2+)去除率。硫化锰相对稳定,在空气中放置30 d仍有80%的镉去除率。较高的离子交换量形成CdS沉淀是MnS高效去除镉的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号