首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
对硬头鳟(Oncorhynchus mykiss)和虹鳟(O. mykiss)鱼苗循环水养殖系统生物滤池运行效率以及其不同部位主要功能进行比较。于2017年5—11月,测定了六级生物滤池的基本水质指标(TAN、NO2--N和NO3--N等),并计算了六级生物滤池对TAN、NO2--N和NO3--N的去除率。于养殖中期,测定了六级生物滤池不同部位(BF1~BF6)的硝化速率、亚硝氮氧化速率和反硝化速率。结果表明:六级生物滤池对TAN、NO2--N和NO3--N的平均去除率分别为75.00%、44.00%和17.70%,其主要去除效果发生在BF1~BF3;六级生物滤池中BF1的硝化速率最高,与BF1较高的初始TAN浓度、充足的溶氧和最适pH有关;BF3的亚硝氮氧化速率最高,与BF3较高的初始NO2--N浓度有关;BF5的反硝化速率最高,与BF5较低的pH和较高NO3--N浓度有关。结果表明适当缩减生物滤池级数,并在循环水养殖系统中加入反硝化反应器,有利于提高系统运行效率。  相似文献   

2.
循环水养殖系统中流化床水处理性能及硝化动力学分析   总被引:3,自引:0,他引:3  
为综合评价流化床生物滤器的水处理性能,选用玻璃珠和石英砂为生物填料,将两滤器应用于罗非鱼循环水养殖系统,探讨了其对养殖水体中营养盐和有机物的去除效果.结果表明,两滤器经过4周的流水挂膜后,生物膜稳定成熟,通过扫描电镜观察填料表面,发现挂膜前后载体表面发生了显著的变化.在优化工况下,以玻璃珠为填料的滤器对TAN的平均去除负荷达到了(346.8±150.5)g/(m3·d),显著高于以石英砂为填料的滤器,但两滤器对COD、BOD5和PO43--P的去除率无显著差别,去除率稳定于20%~21.4%、50.1%~58.4%和7.9%~31.9%之间,显示出较好的水处理性能,出水水质符合罗非鱼生长要求.最后,基于Monod方程,拟合了实际工况下以玻璃珠为填料流化床生物滤器的硝化动力学方程,为该滤器在循环水养殖系统中的高效运行和应用提供一定的技术支撑.  相似文献   

3.
测定了封闭式循环水生产性半滑舌鳎(Cynoglossus semilaevis Günther)养殖系统和流水养殖系统各水处理单元水质指标以及鱼的生长、免疫和消化指标.结果表明,封闭式循环水养殖系统经过25 d的运行,生物滤池出水NH4+-N、NO2--N、PO34--P、COD及SS浓度显著低于养鱼池中NH4+-N、...  相似文献   

4.
为了解斑石鲷循环水养殖系统生物滤池内部细菌群落组成及其净水机制,通过高通量测序方法,研究了不同时期各级生物滤池的细菌群落结构,分析了各级生物滤池的水质参数及水处理效果。结果表明:实验筛选出37 个门和513个细菌属,第3级生物滤池整体微生物群落丰富度和多样性均高于第1级和第2级生物滤池,第2级和第3级生物滤池微生物群落相似性最高。在门水平上,优势菌为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes);在属水平上,发现了起硝化作用的亚硝化单胞菌属Nitrosomonas和硝化螺菌属Nitrospira;实验还发现该系统生物滤池可能存在功能上的浪费现象。该系统的细菌群落结构有稳定的演替模式,生物膜微生物群落变化对水质有一定程度的动态响应,MuricaudaMaribacter等反硝化细菌对硝态氮浓度的变化作用不明显。  相似文献   

5.
人工湿地对水产养殖废水典型污染物的去除   总被引:3,自引:0,他引:3  
考察了5种常见湿地植物黄菖蒲、芦苇、千屈菜、再力花和香蒲对水产养殖废水的净化能力以及生理生长指标,结果表明,黄菖蒲的氮磷吸收能力最强而芦苇较差。构建黄菖蒲、芦苇水平潜流人工湿地研究植物对水产养殖废水典型污染物的净化效果的影响,发现两者对COD、TP、TN和抗生素均有较好去除效果。其中,黄菖蒲湿地对TN的去除效果(HRT=4 d,去除率71%)显著优于芦苇湿地(HRT=4 d,去除率29%),分析其原因在于黄菖蒲湿地因其较强的吸收能力和反硝化作用使其对高NO3--N废水有较好的去除效果。研究中还发现,水力停留时间对TN、NO3--N、NH4+-N和NO2--N的去除效果有较大的影响。两种湿地对恩诺沙星的去除效果优于磺胺甲恶唑和氟甲砜霉素,不同人工湿地植物对3种抗生素的去除效果差异不大,水力停留时间对磺胺甲恶唑的去除有显著的影响。  相似文献   

6.
循环水养殖系统中流化床生物滤器净水效果影响因素   总被引:1,自引:0,他引:1  
为优化流化床生物滤器的工作性能,采用新型填料玻璃珠作为滤器的基质,并将其应用于罗非鱼循环水养殖系统,研究了玻璃珠粒径、床层膨胀率、碱度和氨氮负荷4个可控因素对其处理养殖废水效果的影响。结果表明,流化床生物滤器挂膜23d后生物膜成熟稳定,当床层膨胀率低于160%时,床层增高和填料流失现象不明显。选用0.2~0.4mm粒径的玻璃珠为填料时,对TAN和NO2--N的去除率显著高于以0.4~0.6mm玻璃珠为填料的滤器;随着床层膨胀率的提高,滤器对TAN和NO2--N的去除率逐渐下降,但对TAN的去除负荷有一定的提高;碱度和TAN负荷的增加有利于滤器的硝化作用。流化床生物滤器对养殖水体中的TAN的平均去除负荷和NO2--N的去除率分别可以达到(673.11±23.26)g/(m3·d)和(90.24±3.45)%,显示出较好的硝化性能。  相似文献   

7.
循环水养殖系统水质变化特征的中试研究   总被引:1,自引:0,他引:1  
采用循环水养殖系统进行虹鳟、鲟鱼和鲢鱼的阶梯养殖中试研究,在不更换新鲜水的情况下,系统连续运行30天,分析其中COD、NH4+-N和TP的变化特征。结果表明,在相同养殖密度情况下,养殖虹鳟鱼使循环水COD、NH4+-N和TP浓度分别增加26.6%、45.7%和37.4%,养殖鲟鱼使COD、NH4+-N和TP浓度分别增加16.0%、21.6%和14.4%,生化池对COD、NH4+-N和TP的去除率分别为39.8%、50.0%和1.9%。系统还加入了鲢鱼养殖单元和配置水生植物的沉淀池,增加了系统对污染物的去除效果。实验自第21天起向沉淀池投加壳聚糖,使循环水浊度降低了46.6%,色度降低了38.0%。经过30 d的连续运行,除TP指标外,COD和NH4+-N浓度仍满足《地表水环境质量标准》(GB3838-2002)中地表水Ⅲ类功能区用水标准。  相似文献   

8.
大型循环水池塘养殖系统氮磷污染控制绩效评估   总被引:1,自引:0,他引:1  
循环水池塘养殖系统现已成为太湖流域水产养殖的重要形式。主要针对某大型循环水池塘养殖系统的水质状况进行了调查,并对氮磷污染控制绩效进行了评估。结果表明:人工湿地、生态沟渠和养殖池塘水体总氮平均浓度分别为0.887、1.263和1.745 mg·L-1,人工湿地、生态沟渠和养殖池塘水体总磷的平均浓度分别为0.097、0.081和0.169 mg·L-1。该系统内养殖池塘水体总氮达到《太湖流域池塘养殖水排放标准(DB32/T 1705-2001)》的二级排放标准(TN≤3.0 mg·L-1),总磷均达到一级排放标准(TP≤0.3 mg·L-1);人工湿地和生态沟渠水体总氮和总磷均达到《太湖流域池塘养殖水排放标准》的一级排放标准(TN≤2.0 mg·L-1,TP≤0.3 mg·L-1)。分别采用物料平衡法和化学分析法估算出养殖池塘原始氮磷污染负荷和系统最终氮磷污染负荷。养殖池塘原始氮磷污染负荷分别约为152.66 kg·hm-2(20.46 t·a-1)和32.52 kg·hm-2(4.36 t·a-1),系统最终氮磷污染负荷分别约为2.72和0.15 t·a-1。该大型循环水池塘养殖系统运行情况良好,循环水池塘养殖系统具有良好的自我氮磷污染削减功能,适合作为以后构建水产养殖系统的模式。  相似文献   

9.
实验研究了填充新型无剩余污泥悬浮型生物滤料的曝气生物滤池处理养殖废水的挂膜情况及水力停留时间(HRT)变化对曝气生物滤池处理效果及运行特性的影响。结果表明,含氨氮和亚硝酸氮浓度较高的模拟养殖污水用活性污泥挂膜,大约1个月就能使生物滤池启动。当模拟养殖污水氨氮起始浓度在2 mg/L左右时最佳水力停留时间(HRT)为0.6 h循环6 d能使氨氮浓度降到0.03 mg/L左右,亚硝酸氮有短期积累问题,但最终都能被降到0.05 mg/L以下。水力停留时间影响氨氮的去除时间,从而影响亚硝酸氮的积累。水力停留时间(HRT)对有机物(CODMn)去除影响不大,且该种滤料对有机物(CODMn)去除效果较差,去除率在28%左右。  相似文献   

10.
基于人工快渗(CRIS)和水平潜流人工湿地(HSSFCWs)构建了水平流人工渗滤系统(HFCIS),研究了该系统对耗氧有机物(以COD计)、氨氮(NH4+-N)的沿程去除情况和污染物在系统内的垂向分布情况,并进行了动力学分析。结果表明,在水力负荷为0.083 m·d−1、进水耗氧有机物(以COD计)浓度为220~630 mg·L−1、NH4+-N质量浓度为13~47 mg·L−1时,COD、NH4+-N的去除率分别为88.6%和91.9%以上。在水力负荷为0.25 m·d−1的条件下,进水耗氧有机物(以COD计)和NH4+-N质量浓度分别为613~690 mg·L−1和36~48 mg·L−1时,总去除率分别为95.5%和78.2%以上。水平方向沿程污染物质量浓度呈现逐渐衰减的趋势,污染物降解符合一阶动力学模型,去除速率常数在CRIS和HSSFCWs的速率常数范围内并处于较高水平。该HFCI系统填料简单,复氧效果好,污染物去除性能优异,提高了土地利用率,建造位置选择较为灵活,在分散式污水处理中有独特的优势。  相似文献   

11.
石岩  单威  陈明飞  郑凯凯  王燕  李激 《环境工程学报》2019,13(12):2845-2852
用中试规模生物絮凝工艺处理含化学絮凝剂的生活污水,分别研究了HRT和进水SS对生物絮凝系统污染物去除特性、剩余污泥产量、污泥特性和温室气体排放的影响。结果表明:生物絮凝系统对COD、TN和TP有较好的去除效果,且污染物去除效果受进水SS影响较大;生物絮凝系统平均污泥产量和平均有机物产量最高可达 53.63 kg·d−1和21.14 kg·d−1;污泥胞外聚合物EPS浓度和PN/PS均与有机负荷呈反比;化学絮凝剂通过影响PN/PS和EPS浓度,可间接影响污泥的沉降性能;生物絮凝系统与AAO工艺相结合,可降低50.12 g·m−3温室气体的排放。因此,生物絮凝工艺可为污水处理厂节能降耗运行奠定基础,有望得到广泛应用。  相似文献   

12.
生物炭作为一种疏松多孔的吸附材料,近年来被广泛应用于受污染水体净化。通过构建生物炭投加比为0、10%、30%和40%的间歇曝气湿地系统(分别命名为CW、BW1、BW2和BW3),探究了生物炭投加比例对间歇曝气湿地中污染物去除及微生物群落结构的影响。结果表明,投加生物炭可提高湿地系统曝气段水体中平均溶解氧(DO)浓度。其中,BW3曝气段平均DO浓度为2.5 mg·L−1,相较于CW提高了13.6%,但添加生物炭对非曝气段DO浓度影响不显著(P>0.05)。所有湿地系统水体中化学需氧量(COD)去除率均高于90%,生物炭添加对耗氧有机物去除的影响并不显著。当生物炭投加比例由0增加至40%时,氨氮的去除率由80.76%提高至99.43%。生物炭可以显著提升湿地系统总氮的去除效果,BW3的总氮去除率相较于空白对照提高了18.5%,且在各反应器出水中均未检测到硝态氮(${{\rm{NO}}_3^ -} $-N)和亚硝态氮(${{\rm{NO}}_2^ -} $-N)。高通量测序结果显示,在门类水平,生物炭增加了拟杆菌门(Bacteroidetess)和变形菌门(Proteobacteria)数量,降低了放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)和螺旋体菌门(Saccharibacteria)的相对丰度。各湿地系统中已检出与脱氮相关的菌属共13种,生物炭投加可提升Nitrospira、Thauera、Rhodobacter和Pseudomonas等10余种与脱氮相关的菌落丰度。在间歇曝气湿地系统中,生物炭可以通过增加脱氮相关菌属,提高对氮素污染物的净化效果。  相似文献   

13.
不同滤料及挂膜方式对养殖污水处理效果的研究   总被引:1,自引:0,他引:1  
实验研究了填装不同滤料的4种生物滤池在3种挂膜方式下生物功能启动的情况。结果表明,相同挂膜方式下不同生物滤池中,氨氮浓度都随着系统运行时间的延长而逐渐下降,亚硝态氮浓度先上升达到峰值后下降,但悬浮球形滤料处理污水的效果明显优于其他滤料。悬浮球形滤料下不同挂膜方式,系统稳定时间不同,自然挂膜、活性污泥挂膜、优势菌挂膜三者依次约为39、30和21 d,但采用优势菌挂膜由于生物膜容易脱落,氨氮的处理效果较差。采用活性污泥法加入悬浮球形生物滤料是处理养殖污水行之有效的方法。系统运行27 d可使氨氮的浓度降低到0.033 mg/L,系统运行33 d,亚硝态氮浓度可下降到0.045 mg/L左右。  相似文献   

14.
为解决传统养殖中养殖尾水的环境污染问题,促进池塘养殖可持续发展,基于新建的集装箱式循环水养殖系统,构建了三级养殖尾水净化塘水生态系统模型,对池塘水质、浮游植物及水生动物生物量以及池塘生态系统的演变进行了为期6个月的模拟预测,并设置添加沉水植物和添加低密度滤食性鱼类2种情景模拟。结果表明:水质模拟值的变化趋势与实测值基本一致,模拟值与实测值的平均相对误差为4.98% ~ 23.37%;模拟预测的设定条件下和模拟时段中,池塘生态系统的结构趋于稳定,形成以绿藻为主的藻类群落、以摇蚊和桡足类为主的水生动物群落;在尾水净化塘中,添加沉水植物对氮磷去除效果不明显,但对增加水体中溶解氧质量浓度作用明显,3个池塘溶解氧变化率最大值分别为23.11%、45.39%和77.90%;添加低密度滤食性鱼类有助于浮游植物的生长,3个池塘硅藻生物量的最大增幅为89.80%、47.22%和22.06%,绿藻生物量的最大增幅为76.95%、54.05%和23.29%,蓝藻生物量的最大增幅为45.99%、33.37%和20.30%。综上所述,基于AQUATOX构建串联的尾水净化塘水生态系统模型并模拟培植沉水植物和添加低密度滤食性鱼类的生物处理方法,不仅能够为管理者调整喂养结构提供借鉴与帮助,也可用于调控水生态系统组分,有利于水生态系统功能的恢复和平衡。本研究结果可为管理集装箱式循环水养殖模式的喂养结构、构建尾水净化塘生态系统、改进其他利用生物处理技术处理养殖尾水的养殖模式提供参考。  相似文献   

15.
以可生物降解聚合为碳源的固相反硝化可以避免水产养殖用水硝酸盐处理过程中碳源反复添加、碳源不足或过量等问题。水力停留时间(hydraulic retention time, HRT)是生物反应器运行管理的主要参数之一, 用固定膜反应器固相反硝化的方法研究了HRT对以聚己内酯(polycaprolactone,PCL)为碳源的反应器去除循环水养殖系统硝酸氮(浓度为170~197 mg·L-1)的效率的影响。 研究结果表明不同水力停留时间对硝酸盐去除效率差异显著。在HRT 为6 h和8 h时,硝酸盐速率分别为(0.55±0.32) g·(L·d)-1和(1.05±0.33) g·(L·d)-1,且出水亚硝氮浓度和氨氮浓度均明显低于进水浓度;在HRT为4 h和2 h时,进出水硝酸盐浓度差异不明显。电子扫描显微镜观察显示PCL表面生物膜主要为杆状菌,应用傅里叶红外扫描观察发现使用前后PCL的化学结构没有发生明显改变。应用高通量方法测定的微生物群落结构表明,62%的细菌为Proteobacteria(62%),在鉴定出的细菌中,食酸菌属(Acidovorax), 固氮螺菌属(Azospira),丛毛单胞菌属(Comamonas), 代尔夫特菌属(Diaphorobacter), 懒小杆属(Ignavibacterium), 弗拉特氏菌属(Frateuria)可以同时降解PCL和进行反硝化。  相似文献   

16.
为降低污水处理成本并实现出水稳定达标,采用中试规模生物絮凝-AAAO工艺处理城镇生活污水,并模拟生物絮凝污泥厌氧消化所产生的碳源,用于强化反硝化除磷菌(DPAO)驯化效果。实验结果表明:生物絮凝系统抗冲击负荷能力较强,化学需氧量(COD)、总氮(TN)和总磷(TP)平均去除率可达67.23%、27%与68.93%。将模拟厌氧消化后产生的碳源投加至厌氧池促进DPAO的驯化后,AAAO系统对COD、TN和TP去除率分别提升31.53%、37.67%和26.37%,反硝化吸磷率最高可达62.97%,二沉池出水COD、TN均满足一级A出水标准,TP可低于0.30 mg·L−1。生物絮凝-AAAO工艺脱氮除磷效果较好,可为污水处理厂节能降耗运行奠定基础并有望得到广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号