首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用具有良好异养硝化好氧反硝化功能的菌剂启动生物接触氧化工艺,用以处理经化粪池厌氧消化后的高速列车真空集便废水.重点研究了HRT对生物膜反应器中好氧反硝化菌处理列车集便废水的影响,并进行了动力学模型分析.实验结果表明,在选用立体弹性填料为生物膜载体时,系统的最佳HRT为6 h.该条件下,反应器稳定运行的COD、总氮和氨氮的去除率均大于80%.通过对系统底物降解动力学的初步探究,得出了相关降解动力学常数KS、μmax.经验证,Monod模型较好地描述了系统的基质降解动力学行为,为高速列车真空集便废水的处理提供了相对高效、简便的方法.  相似文献   

2.
曝气生物滤池去除有机物及硝化氨氮的影响因素研究   总被引:8,自引:0,他引:8  
采用以陶粒为填料的曝气生物滤池(BAF)处理低浓度生活污水,研究在气水比一定的条件下,水力负荷、有机负荷及氨氮负荷对BAF去除有机物及硝化氨氮的性能的影响.研究结果表明,当试验进水COD为105.8~156.6 mg/L,气水比为3:1的条件下,降解有机物的最佳水力负荷为1.35~1.68 m3/(m2·h),COD平均去除率为86.3%.氨氮负荷是影响反应器硝化性能的直接因素.当水力负荷为1.05 m3/(m2·h),平均进水COD为106.1 mg/L时,若使出水氨氮低于15 mg/L,则反应器能承受的最大进水氨氮负荷为0.5 kg/(m3·d)左右.并确立了相应的反应器动力学模型.  相似文献   

3.
采用SDC-03型生物载体作为填料,考察厌氧-特异性移动床生物膜反应器对农药含酚废水中酚的去除效果,并探讨水力停留时间(HRT)、溶解氧(DO)、进水酚浓度、pH值4个影响因素对反应器处理效果的影响。实验结果表明:在水温20~35℃,进水pH为7.0~8.5,酚浓度为36.70~86.56 mg·L-1,系统水力停留时间(HRT)为10 d的操作条件下,酚可稳定在2 mg·L-1以下,运行后期酚浓度可降到0.5 mg·L-1以下,平均去除率为98.24%,最高可达99.56%。出水水质满足《污水综合排放标准》(GB 8978-1996)的排放标准。  相似文献   

4.
厌氧折流板反应器处理硝基苯废水的研究   总被引:4,自引:0,他引:4  
采用厌氧折流板反应器(ASR)中温处理含硝基苯废水,研究了工艺条件和硝基苯的降解特点.试验结果表明:在进水COD浓度为2088mg/L,硝基苯浓度为16.8mg/L,反应温度为35℃,停留时间为24h条件下,ABR能有效处理硝基苯废水,COD去除率为86.4%,硝基苯去除率为91.1%;在厌氧条件下,硝基苯降解为苯胺,但苯胺很难再进一步分解;硝基苯的去除历程推断为先吸附后分解。  相似文献   

5.
采用逐步降温法启动上流式污泥床反应器(UASB)并对其过程做动力学分析。UASB反应器采用逐渐提高进水COD负荷的方式在25℃进行启动,当COD去除率达到70%完成启动。启动完成后,降低温度运行反应器,在20℃时COD的去除率达到65%左右。在25℃条件下,出水氨氮浓度增加,总氮浓度有增加趋势,随后出水总氮浓度降低;在20℃负荷提高和稳定时期,出水的氨氮浓度逐渐降低,总氮浓度逐渐升高。建立低温条件下厌氧处理高浓度有机废水的动力学模型,分析结果看出20℃运行阶段的基质比降解速度高于25℃阶段基质比降解速度,在20℃条件下厌氧污泥活性最大,污泥性能最佳。推测原因,可能是由于25℃时进水浓度较高,且废水中含有大量抑制性物质(1.1 mg·L-1),较大影响了微生物的降解速率、而在20℃时进水浓度降低,废水中的抑制性物质也有所降低,为0.75 mg·L-1。  相似文献   

6.
采用AOAB(水解酸化A1+生物接触氧化O+深度水解酸化A2+曝气生物滤池BAF)工艺处理难降解混合化工污水,重点研究工艺挂膜方式和生物膜的驯化。结果表明,采用分段连续式挂膜法进行反应器挂膜,20 d即可完成快速挂膜启动;采用分阶段同步培养驯化法驯化生物膜,30 d内可完成高浓度多组分混合化工污水进水的驯化,最终进水COD 1 456 mg/L,出水COD 324 mg/L,总去除率76.85%,驯化效果显著;整个工艺对COD的降解主要集中在生物接触氧化池和曝气生物滤池,驯化期间生物接触氧化池去除率稳定在40%左右,曝气生物滤池去除率稳定在50%以上。同时,通过对比一段水解酸化和深度水解酸化的VFA(挥发性脂肪酸)产出,表明在高有机负荷进水时,一段水解酸化降解大分子有机物的能力有限,但这些有机物可通过二段水解酸化再次降解,由此体现了AOAB工艺在处理多组分混合型的难降解化工污水的优势。  相似文献   

7.
采用厌氧折流板反应器(ABR)中温处理含硝基苯废水,研究了工艺条件和硝基苯的降解特点.试验结果表明:在进水COD浓度为2088 mg/L,硝基苯浓度为16.8 mg/L,反应温度为35℃,停留时间为24 h条件下,ABR能有效处理硝基苯废水,COD去除率为86.4%,硝基苯去除率为91.1%;在厌氧条件下,硝基苯降解为苯胺,但苯胺很难再进一步分解;硝基苯的去除历程推断为先吸附后分解.  相似文献   

8.
利用活性污泥-生物膜一体化反应器处理含苯酚废水,考察了反应器对苯酚和COD的处理效果以及反应器运行中生物膜干质量(SS)、挥发性干质量(VSS)、活性生物量、脱氢酶活性(DHA)、胞外聚合物(EPS)的变化,探究了生物膜特性与废水处理效果之间的关系。结果表明:在进水苯酚质量浓度由50 mg·L−1逐步提高到500 mg·L−1的过程中,苯酚和COD去除率均呈先降后升的趋势;当进水苯酚质量浓度为250 mg·L−1时,反应器能适应苯酚冲击,苯酚和COD去除率分别稳定在97%和60%以上;当进水苯酚质量浓度为500 mg·L−1时,苯酚去除率可达到99%,同期SS、VSS、活性生物量及DHA(22.03~57.07 mg·g−1)的变化亦反映出生物膜性能的提升,说明反应器对苯酚质量浓度变化的适应能力较强。此外,EPS质量分数为42.99~310.51 mg·g−1,蛋白质(PN)与多糖(PS)的质量比为0.67~1.39,且当初始苯酚质量浓度为250 mg·L−1时,PN/PS值最高,EPS亲水性低,生物膜可高效降解苯酚。以上研究结果表明,逐渐提高进水苯酚质量浓度能有效提高活性污泥-生物膜一体化反应器对苯酚的适应性和降解率。  相似文献   

9.
炼化污水中污染源以难降解有机物为主,降低污水生物毒性,提高其可生化性是炼化污水达标排放的关键环节。为降低工艺运行成本及产泥量,同时为后续好氧生化处理提供优质水源,实验采用高效厌氧生物反应器处理炼化污水,探讨炼化污水厌氧处理过程中的COD去除率、能源转化效能、微生物菌群变化、可生化性及有机污染物降解效果。结果表明,该反应器对炼化污水COD平均去除率达70.01%,出水中大分子复杂难降解有机污染物转化为以小分子有机酸类为主的有机物,可生化性明显提高,为后续生物处理提供良好运行条件。  相似文献   

10.
通过对装有不同填料的2个厌氧移动床生物膜反应器(R1和R2)的有机负荷、COD去除率、沼气产量及其组成、出水挥发性有机酸(VFA)和出水pH值的对比,得出在填料充填率相同、进水COD和进水pH相似的情况下,填料比表面积是影响厌氧移动床生物膜反应器运行效果的主要因素.R1中填料的比表面积为528 m2/m3,R2中填料比表面积为211m2/m3.在整个运行阶段,填料比表面较大的R1反应器的运行结果较好.试验结束时,R1与R2的有机负荷比为1.61,而R1与R2填料上的污泥量之比为4.42.  相似文献   

11.
通过对装有不同填料的2个厌氧移动床生物膜反应器(R1和R2)的有机负荷、COD去除率、沼气产量及其组成、出水挥发性有机酸(VFA)和出水pH值的对比,得出在填料充填率相同、进水COD和进水pH相似的情况下,填料比表面积是影响厌氧移动床生物膜反应器运行效果的主要因素.R1中填料的比表面积为528 m^2/m^3,R2中填料比表面积为211m^2/m^3.在整个运行阶段,填料比表面较大的R1反应器的运行结果较好.试验结束时,R1与R2的有机负荷比为1.61,而R1与R2填料上的污泥量之比为4.42.  相似文献   

12.
采用摇动床生物膜反应器,在中国北方冬春季5~10℃的低温条件下,以城市生活污水处理厂的二级处理出水为水源进行了工作体积4.8 m3的反应器深度处理的中试研究。中试过程以COD、NH4+-N和浊度的去除率为考察指标。实验结果表明:反应器对生活污水深度处理的合适的工艺参数为进水温度10℃,停留时间(HRT)4.8 h,气水比4∶1,曝气量4 m3/h,水流量1.0 m3/h,采用每间隔4 h曝气4 h的间歇式曝气方式;在低温条件下,对污水的COD和NH4+-N的去除率分别为30%和50%,而对浊度的去除率较低。中试表明,摇动床生物膜反应器可应用于中国北方冬春季低温条件下对水中COD和NH4+-N的去除。  相似文献   

13.
采用移动床生物膜反应器(MBBR)处理已回收磷后的实际污泥水,在进水平均氨氮浓度为167.51 mg·L−1、HRT为22.24 h、DO为0.5 mg·L−1和温度为24~26 ℃的条件下实现了一体式短程硝化-厌氧氨氧化过程的耦合,对氨氮和总无机氮的最大去除率可达96%和79.7%。但是,一体式反应器受DO浓度影响较大,维持稳定的DO浓度对于系统的氮去除非常重要。荧光原位杂交(FISH)及高通量测序结果表明,MBBR的生物膜及活性污泥中Nitrosomonas菌分别占总菌数的10.46%和21.46%,厌氧氨氧化菌的优势菌种Candidatus Kuenenia在生物膜和活性污泥中分别占总菌数的4.13%和0.71%。因此,MBBR中活性污泥主要完成亚硝化,生物膜主要完成厌氧氨氧化,常温条件下,两者在一个反应体系中共同完成了对污泥水中氮的高效自养脱除。以上结果表明了一体式反应器处理实际污泥水的可行性,可为该工艺在实际工程中的应用提供参考。  相似文献   

14.
多孔矿物载体厌氧固定床处理有机废水研究   总被引:1,自引:0,他引:1  
通过天然浮石和塑料多孔空心球而制成复合式多孔矿物载体应用于厌氧固定床反应器中,研究反应器挂膜性能,以及处理生活污水、啤酒废水效果,应用扫描电镜观察生物膜微生物相的形态结构.结果表明,反应器挂膜69 d后COD去除率稳定在70%以上,初次启动成功;处理生活污水中平均COD去除率为61.72%;处理啤酒废水中COD去除率高...  相似文献   

15.
向成功启动并稳定运行630 d后的UASB生物膜反应器系统连续添加有机物,分析其对厌氧氨氧化反应脱氮效果的影响,并进行氮素浓度负荷试验.在厌氧氨氧化反应器系统中连续投加有机COD(葡萄糖),系统运行稳定,有机COD(葡萄糖)存在对系统去除氮素能力影响不大,有机COD去除率达到92.0%,仅用23 d,在同一反应器系统中成功实现了厌氧氨氧化与反硝化协同作用脱氮.氮素浓度负荷试验阶段,进水氨氮(NH 4-N)、亚硝氮(NO-2-N)以及总氮(TN)浓度负荷分别从0.063 kg/(m3·d)和0.063 kg/(m3·d)和0.126 kg/(m3·d)提升到了0.239 kg/(m3·d)、0.315 kg/(m3·d)和0.554 kg/(m3·d),相应去除率分别为84.0%、93.0%和85.0%,厌氧氨氧化工艺的UASB生物膜反应器对氮素浓度负荷仍有很大提升空间.  相似文献   

16.
为提高曝气生物滤池处理效率、研发新型具有结构和功能优势的颗粒填料,采用间歇式完全混合循环流态化反应器,探究了自制复合颗粒A、自制复合颗粒B、中劲陶粒及石英砂颗粒填料在4个水力停留时间下的挂膜性能、动力学参数及生物膜活性等生物膜特性,建立了生物膜微生物动力学参数实验测定的新方法。结果表明:当水力停留时间为8~12 h时,自制复合颗粒A、B挂膜性能优于石英砂和中劲陶粒,生物膜增殖速率分别为95.83 、63.75 mg·(L·h)−1(以COD去除率标准评价)和54.13、29.23 mg·(L·h)−1(以氨氮降解率标准评价);装填复合颗粒A的完全混合循环流态化反应器氨氮降解效率最高,相应生物膜表观产率系数最低,剩余污泥量最少;当水力停留时间超过8 h后,复合颗粒附着生长生物膜的脱氢酶活性、表面蛋白质、多糖含量最高。由此可知,以自制复合颗粒A、B为颗粒填料能优化曝气生物滤池的处理效率。本研究结果可为新型生物滤池技术的发展提供参考。  相似文献   

17.
采用生物膜流化床工艺对中部某城镇污水处理厂进行提标改造,在冬季水温低于14℃时进行中试研究。取好氧池1和2中的部分填料经小试实验对其中的硝化反应动力学分析,得出填料上相应生物膜硝化反应速率表达式。并通过物料衡算计算出两级生物膜流化床反应器硝化反应动力学模型,经过实际中试实验,测得实际值与计算值相关性较好,其相对误差在15%以下。应用模型在单个反应器为完全混合、整体为推流模式的多级生物膜流化床工艺,得出NH4+-N出水浓度计算表达式。  相似文献   

18.
针对榨菜腌制废水高盐高氮磷高有机物浓度的特征,提出"厌氧序批式生物膜反应器(ASBBR)-二级序批式生物膜反应器(SBBR)-化学除磷"组合处理工艺,在前期对组合工艺中单元工艺的关键工况参数研究的基础上,考察组合工艺的处理效能。实验结果表明,采用该组合工艺,可使进水COD、NH4+-N、TN及PO43--P分别为10 000、345、550和38.5mg/L的榨菜腌制废水,处理出水COD、NH4+-N、TN及PO43--P分别达到93.6、12.3、18和0.1 mg/L,去除率分别为99.1%、96.4%、96.7%和99.9%,出水达到污水综合排放一级标准。  相似文献   

19.
采用SDC-03型填料作为生物载体,对厌氧/特异性移动床生物膜反应器(A/SMBBR)工艺处理低碳氮比工业废水的挂膜启动及稳定运行过程进行优化分析。通过单因素试验和基于Box-Behnken设计的响应曲面法考察了碳源投加量(以乙醇为碳源)、水力停留时间(HRT)及填料填充率对系统TN去除率的影响及其交互作用。结果表明:(1)3个参数对TN去除率影响顺序为填料填充率碳源投加量HRT,其中填料填充率和HRT之间的交互作用最显著。(2)模型预测的最佳条件为碳源投加量90mg/L、HRT=3.0d、填料填充率55%,TN去除率预测值为90.78%。在该条件下TN去除率实际值达91.02%,与模型预测值基本一致,表明响应曲面模型与实际情况拟合良好。  相似文献   

20.
在北京某污水处理厂成功启动了短程硝化厌氧氨氧化(PN-ANA)技术处理热水解厌氧污泥消化液的工艺,并评价了该旁侧技术对主流区的影响。该工艺运行结果表明:在接种生物膜的填料填充比为5%,生物膜上AnAOB占比大于10%的情况下,经过6个月调试运行之后,PN-ANA工艺出水可达到设计指标;总氮去除负荷为0.3 kg·(m3·d)−1,总氮去除率达到78%。估算表明,旁侧PN-ANA工艺可使日处理量为100×104 t水厂的出水总氮降低约3 mg·L−1。另外,通过分子生物学分析发现,工程调试过程中氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)呈缓慢增长趋势,与处理效果的提升趋势相一致。该工艺成功运用厌氧氨氧化处理热水解厌氧污泥消化液,启动时间仅为半年,可为该技术处理高氨氮废水的工程应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号