首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8种植物对铀和镉的富集特性   总被引:1,自引:0,他引:1  
研究8种植物在铀镉复合污染土壤条件下的吸收、富集和转运特性具有重要意义。在每千克土中施用铀、镉的浓度分别为150、15 mg·kg-1,采用主成分分析法对植物富集特性进行综合性评价。结果表明:白皮菜铀镉综合评价值最高,地上部、地下部、单株铀镉总含量、单株铀镉总积累量均最大,分别为90.03 mg·kg-1DW(干质量)、477.00 mg·kg-1DW、150.26 mg·kg-1DW和1 168.52μg;花椰菜铀综合评价值最高,地上部、地下部铀含量分别为42.16、444.83 mg·kg-1DW,单株铀积累量达到255.42μg;南瓜综合评价最低,单株铀镉积累量仅为58.47μg;供试植物地上部铀含量均显著小于地下部铀含量,转运系数均小于1,根系是植物富集铀镉的主要器官。  相似文献   

2.
南方水稻镉(Cd)污染是我国当前面临的主要环境问题之一。以中稻丰两优1号为材料,采用大田小区实验,研究了根区施加钙镁磷肥(P1:1 800 kg·hm~(-2)、P2:3 000 kg·hm~(-2))、叶面喷施硅/硒(LS:2.0 mmol·L-1Na_2SiO_3、LX:25μmol·L~(-1)Na_2SeO_3、LSX:1.0 mmol·L~(-1)Na_2SiO_3+12.5μmol·L~(-1)Na_2SeO_3)以及根区与叶面联合处理(P_1LS、P_1LX、P_1LSX、P_2LS、P_2LX、P_2LSX)下水稻对Cd的吸收。结果表明:1)根施钙镁磷肥显著降低了土壤有效态Cd含量(p0.05),P1、P2较对照分别降低16.1%和29.5%;单独的根施钙镁磷肥或叶喷硅/硒处理后,稻米Cd含量较对照均显著降低(p0.05),各处理降幅分别为P140.8%、P257.2%、LS 42.3%、LX 35.0%、LSX 39.2%;根施钙镁磷肥与叶喷硅/硒联合调控对降低稻米Cd含量表现出显著的协同效应(p值显著性),其中P_1LS、P_1LX和P_1LSX较单独的P1分别降低了61.2%、59.5%和68.2%,P_2LS、P_2LX和P_2LSX较单独的P2分别降低了75.0%、54.2%和75.7%。2)Cd从秸秆向籽粒转运系数(SS)大于从根向秸秆转运系数(RS),根区与叶面联合处理明显降低RS和SS,并有显著的协同效应(p0.05),其中P1与Si/Se联合,RS和SS平均降低了7.4%和22.0%,P2与Si/Se联合,RS和SS平均降低了16.0%和19.6%。3)从食品安全来说,单独的根施钙镁磷肥或叶喷硅/硒,大米Cd含量多数超标(国标0.2 mg·kg~(-1)),而根区与叶面联合处理几乎都能实现Cd含量不超标,其中降幅最大的为P2LS和P2LSX,稻米Cd含量不到0.09 mg·kg~(-1)。因此,根施钙镁磷肥与叶喷硅/硒联合处理可显著降低水稻Cd吸收、保障稻米质量安全。  相似文献   

3.
石灰钝化法原位修复酸性镉污染菜地土壤   总被引:5,自引:0,他引:5  
在湖南省湘潭县酸性(pH=5.47±0.64)镉污染((1.06±0.08)mg·kg~(-1))菜地,进行为期1年的田间修复实验。研究施用石灰类钝化剂(石灰石或生石灰)对菜地土壤镉(Cd)的有效性、当地常见蔬菜可食部位Cd含量的影响,分析蔬菜种植过程中农业投入品对表层土壤(20 cm)Cd积累的影响,确定Cd污染菜地蔬菜安全生产的措施。结果表明:与对照相比,施加4 500 kg·hm~(-2)CaCO_3或3 000 kg·hm~(-2)CaO分别使土壤pH升高了1.48和1.73,土壤有效态Cd含量分别降低了87.8%和78.1%;叶菜类、根茎类、茄果类和豆类蔬菜可食部位Cd含量分别降低了5.9%~70.5%、59.8%~65.8%、4.0%~50.0%和35.0%~76.4%,但施用4 500 kg·hm~(-2)CaCO_3或3 000 kg·hm~(-2)CaO不能使叶菜类、茄果类蔬菜中Cd含量降低到相应的国家食品安全标准限值(叶菜类蔬菜,0.2 mg·kg~(-1);茄果类蔬菜,0.05mg·kg~(-1))以下;蔬菜种植过程中施用的基肥、灌溉水、CaCO_3或CaO不会导致表层土壤Cd含量增加。在酸性Cd污染菜地施用CaCO_3或CaO、并种植低Cd积累蔬菜,可以实现蔬菜的安全生产。  相似文献   

4.
综合分析当前氰化物污染土壤处理方法的特点,提出异位筑堆淋洗-废水解毒工艺处理氰化物污染土壤的技术方法。采用装柱淋洗-废水解毒工艺对天津某氰化物污染土壤开展实验研究,结果表明:采用pH值10~11的石灰水,控制淋洗强度60 L·(m~2·h)~(-1),淋洗时间22 d时,土壤中总氰化物平均含量从47.91 mg·kg~(-1)降低至3.73 mg·kg~(-1),达到土壤污染风险筛选指导值中住宅类用地小于9.86 mg·kg~(-1)的要求;采用碱性氯氧化法对淋洗产生的废水进行了处理,在局部氧化阶段反应pH值12.5,漂白粉用量3.5 g·L~(-1),反应时间1.5 h;完全氧化阶段漂白粉用量4.5 g·L~(-1),反应pH值8.0,反应时间1.0 h的条件下,废水中总氰化物含量可由83.9 mg·L~(-1)降低至0.33 mg·L~(-1),达到GB 8978-1996中小于0.5 mg·L~(-1)要求。研究结果初步表明,采用异位筑堆淋洗-废水解毒工艺处理氰化物污染土壤具有实际应用可行性。  相似文献   

5.
外源螯合剂CA和NTA对苎麻修复铅镉复合污染土壤的影响   总被引:2,自引:0,他引:2  
采用盆栽实验,研究了在两组铅镉复合污染(Cd(10 mg·kg~(-1))/Pb(100 mg·kg~(-1))和Cd(50 mg·kg~(-1))/Pb(500 mg·kg~(-1)))条件下,不同浓度的柠檬酸(CA)和氮三乙酸(NTA)(0,1,5,10 mmol·kg~(-1))对苎麻生物量、地上部分丙二醛(MDA)含量和抗氧化酶活性、苎麻各部分对Pb和Cd的积累的影响。结果表明,CA和NTA的应用均能促进苎麻的生长和提高Pb和Cd在苎麻体内积累。CA在促进苎麻生长、增强了苎麻对Cd的吸收和转移方面效果显著,但是,CA对Pb的提取和转移促进效果不显著。NTA促进苎麻对Pb的吸收和转移,并且同样有助于Cd的植物修复。苎麻体内CAT,SOD,POD活性和MDA含量变化表明CA和NTA缓解了Cd和Pb对苎麻的氧化胁迫。因此,外源螯合剂CA和NTA的应用有利于铅镉复合污染土壤的植物修复。  相似文献   

6.
通过水培实验,研究香蒲根系对水中镉的根际过滤效果及富集量。结果表明:在镉浓度1 mg·L~(-1)的静止水体中,香蒲根际过滤对镉的去除率为66%;在相同镉浓度并且水力停留时间为8 h的流动水体中,镉去除率为52%。香蒲体内富集的镉约90%集中在根部,且第1天镉的去除速率最快,镉浓度以约0.1 mg·h~(-1)速率下降;在静止水体中,香蒲根系7 d对镉的富集量为682.99 mg·kg~(-1)(DW),动态水体中香蒲根系富集量达1 096.94 mg·kg~(-1),可有效去除水中的镉。  相似文献   

7.
镉锌超积累植物伴矿景天产后鲜样快速处置技术   总被引:1,自引:0,他引:1  
超积累植物伴矿景天(Sedum plumbizincicola)在镉污染农田土壤修复方面有着广泛的应用前景,而收获物的快速减量处置是亟需解决的技术问题之一。将产后伴矿景天鲜样破碎、压榨,得到的残渣可快速晒干,浆液则利用物理、化学方法处理,使出水镉(Cd)浓度降低到相关标准限值以下,实现安全排放。主要考察了不同榨汁率下残渣干燥时间,以及不同絮凝剂、pH值、重金属捕获剂等因素对浆液中Cd去除率的影响,以获得最优的处理方案。结果表明,伴矿景天鲜样经破碎、压榨处理后,晒干时间从半个月以上降低至2~6 d,投加质量比分别为0.3%的聚合氯化铝(PAC)、0.1%的NaOH、0.05%的三巯三嗪钠盐(TMT,重金属捕捉剂)处理后,浆液Cd浓度由1.98 mg·L~(-1)降至0.066 mg·L~(-1),低于《国家污水综合排放标准》(GB 8978-1996)0.1 mg·L~(-1)的限值。  相似文献   

8.
以屠宰场废弃动物血液为原料,经高温干燥、粉碎为血粉,以此血粉为吸附剂,研究血粉添加量、溶液初始浓度、吸附温度、溶液pH、吸附时间对废水中Cd2+吸附量与去除率的影响。结果表明,在25℃、pH=5时,4 g血粉对初始浓度为20mg·L~(-1)的镉离子溶液(100 m L)振荡吸附2 h后,溶液中剩余镉离子浓度为0.1 mg·L~(-1),Cd2+的去除率为99.38%,达到污水综合排放标准(GB 8978-1996)中镉排放限值0.1 mg·L~(-1);血粉对镉离子的吸附反应符合Langmuir等温吸附方程,可决系数为0.999 7,Cd2+的理论饱和吸附量为10.24 mg·g-1。为了使剩余Cd2+浓度达到更低(电镀废水排放标准),在吸附工艺上设计出2步吸附法,即第1次吸附后的混合液进行过滤,再将滤液加1 g血粉进行第2次吸附。结果表明,2步吸附法大大降低了溶液中剩余Cd2+离子浓度,即经过第1步、第2步吸附后,溶液中剩余Cd2+离子浓度降至0.006 mg·L~(-1),达到或低于电镀污染物排放标准(GB 21900-2008)对Cd2+的排放限值(0.05 mg·L~(-1))。这是常规吸附剂活性炭、石英砂、高岭土等所不能达到的技术指标,为废水去除Cd2+提供了一种可能的新技术。  相似文献   

9.
小分子有机酸诱导野苋菜修复Pb污染土壤   总被引:1,自引:0,他引:1  
通过土培实验,研究小分子有机酸对野苋菜吸收重金属Pb的影响。结果表明,添加小分子有机酸处理能有效促进野苋菜的生长,显著提高野苋菜地上/下部Pb含量,柠檬酸、乙酸在15 mmol·kg~(-1),草酸在10 mmol·kg~(-1)时,植物Pb积累量达到最大值,分别为15.625、18.732和9.072 mg·kg~(-1),高于对照166%、219%和54%;高浓度(20 mmol·kg~(-1))有机酸处理,对植株产生一定的毒害作用,影响植株富集Pb能力。3种有机酸均能促进植株地上部对Pb的吸收,作用表现为乙酸柠檬酸草酸,说明适当浓度的有机酸能增强土壤中重金属Pb的活性,提高植株修复Pb污染土壤的能力。  相似文献   

10.
水体沉积物是水体污染物的重要汇和源,水湿生植物具有净化水体的重要功能。采用人工污染土壤的盆栽方法,对8种不同生活型水湿生植物吸收富集土壤Cd和Pb的分析结果发现,莎草地上部分和地下部分Cd含量随着土壤中Cd浓度的增加而增加,在土壤中Cd添加浓度(干重)为5 mg·kg-1时,Cd的累积浓度分别1.13 mg·kg-1DW和1.63 mg·kg-1DW;供试植物的地下部分Pb含量是地上部分的10~20倍,莎草和香蒲的地下部分Pb含量在高浓度Pb土壤中达到20 mg·kg-1DW左右。黄花鸢尾、莎草以及睡莲这3种植物对土壤Cd的转运系数和富集系数大于1,结合生物量因素可以认为,莎草具有富集土壤Cd能力,而莎草和香蒲具有固定土壤Pb的能力。  相似文献   

11.
针对黄姜皂素水解废液有机物浓度高、酸度高、可生化性差等特点,采用常压蒸发浓缩法预处理黄姜皂素水解废液,研究了初始pH值和浓缩倍数对废液主要污染物蒸发浓缩效果的影响。结果表明:初始pH值对蒸出液COD、氨氮、VFA浓度变化影响较大。pH7时,COD和乙酸浓度分别由4 045 mg·L~(-1)、1 742 mg·L~(-1)快速降低到980 mg·L~(-1)、82.9 mg·L~(-1);氨氮浓度在25 mg·L~(-1)处波动;pH7时,COD浓度在1 000 mg·L~(-1)处波动,乙酸由82.9 mg·L~(-1)缓慢降低到6.4 mg·L~(-1),氨氮浓度由26.2 mg·L~(-1)快速升高到207 mg·L~(-1)。浓缩倍数对蒸出液污染物浓度影响也很大。浓缩2~10倍,COD、氨氮、乙酸浓度分别由980、26.2、82.9 mg·L~(-1)升高到3 372、141、2 250 mg·L~(-1),对应占其污染物总量的百分比由0.66%、1.91%、1.46%升高到4.08%、18.5%、71.5%。考虑工艺设备耐腐蚀性、蒸发能耗、耗时和处理效果等因素,选择初始pH=7、浓缩5~7倍比较适宜。蒸出液经过适当处理可做工艺回用水,达到废水处理资源化、减量化的目的。  相似文献   

12.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

13.
为了解决常规污水处理技术无法进行完整的硝化反硝化过程,污水厂出水中氨氮、总氮、总磷偏高以及运行成本较高的问题,以某污水厂排水为研究对象,通过物化与生化耦合,构建化学催化生物耦合床(CCBF)脱氮系统,研究CCBF系统对污水厂排水中氨氮、总氮、总磷和COD的去除效能。结果表明:当DO为5.5~6.0 mg·L~(-1)、RT为8 h、C/N为1.5∶1时,CCBF可将NH_4~+-N从48.5 mg·L~(-1)降至4.58 mg·L~(-1)、TN从51.2 mg·L~(-1)降至6.5mg·L~(-1)、 TP从6.6mg·L~(-1)降至0.48mg·L~(-1)、 COD从78.5mg·L~(-1)降至33mg·L~(-1),去除率分别达到89.5%、85.7%、92.5%和57.9%;污水经处理后,氨氮、总氮、总磷、COD均达到城镇污水处理厂污染物排放标准(GB18918-2002)一级A排放标准。利用Eckenfelder方程对系统脱氮过程进行模拟,求得n_(NH_4~+-N)=0.314 764,n_(TN)=0.282 21,K_(NH_4~+-N)=0.128 024,K_(TN)=0.218 59,与水力负荷为0.000 8~0.007 m~3·(m~2·min)~(-1)的常规生物处理相比,系统内部生物量充足、活性高,物化与生物耦合强化效果明显。  相似文献   

14.
以云南省某废弃有色金属冶炼厂镉污染土壤为研究对象,分别采用单一淋洗和复合淋洗方法探究盐酸、FeCl3、鼠李糖脂淋洗剂及淋洗条件对土壤中镉去除效果的影响。结果表明,在盐酸(1 mol·L~(-1))+鼠李糖脂(2%)配比为2∶1,液固比为8∶1,淋洗时间为24 h的条件下,土壤中镉的去除率可达86.78%,可将镉污染强度为1 180 mg·kg~(-1)的土壤修复至满足《土壤环境质量建设用地土壤污染风险管控标准》(GB 36600-2018)第二类用地管制值(Cd172 mg·kg~(-1))的要求。该方法可有效去除土壤中活性态镉,使土壤生物毒性明显降低。  相似文献   

15.
为实现处理焦化废水的颗粒污泥的快速培养,进而高效处理焦化废水,在22~27℃环境温度下,平行运行2个EGSB反应器,用焦化废水驯化处理啤酒废水颗粒污泥,对微氧运行(与厌氧对比),有机营养物添加(厌氧、微氧运行)、无机碳营养添加(厌氧、微氧运行)3种情况时的污染物质(COD)去除效果进行实验研究。研究结果表明:与厌氧相比,微氧运行能够明显强化焦化废水中毒性污染物质的去除。在焦化废水驯化初期,多次水质冲击(1 500 mg·L~(-1)COD,220 mg·L~(-1)氨氮→2 000 mg·L~(-1)COD,70 mg·L~(-1)氨氮→700 mg·L~(-1)COD,104~220 mg·L~(-1)氨氮),微氧运行时COD平均去除率为24.8%(厌氧运行时仅为5.16%)。微氧运行虽然保证了污泥床的有效膨胀,但COD去除率的提高仍然有限。有机营养物的添加并没有使得COD去除率大幅提高,厌氧时为22.8%,微氧时为37.5%。无机碳营养(碳酸氢钠)的添加能够大幅提高焦化废水中COD去除率,厌氧时提高到53.8%;微氧时提高到75.4%,增幅分别达到31.0%和37.4%。微氧运行条件与无机碳营养的耦合作用能强化焦化废水中COD的去除,快速驯化培养处理焦化废水颗粒污泥。通过给处理焦化废水微氧EGSB反应器内添加碳酸氢钠,40 d就能完成高活性颗粒污泥的培养,高效处理焦化废水中各种污染物质。进水COD、酚类、氰化物和硫氢化物分别为54.8—1 927 mg·L~(-1),10.1—154.3 mg·L~(-1),0.9—57.8 mg·L~(-1)和66.7—340.4mg·L~(-1)、进水流量1.2 L·h-1、HRT10 h时,COD去除率达到78%~86%,酚类、氰化物、硫氢化物的平均去除率分别高达98.9%、93.1%和97.5%。  相似文献   

16.
蔬菜基地土壤污染状况与人类健康有着密切的关系。本研究对福州市蔬菜基地土壤中6种重金属和15种美国环境保护总署(US EPA)优控的多环芳烃(PAHs)污染状况进行了调查,并分析了污染物含量与土壤磁性指标间的关系。结果表明,土壤中重金属平均含量为Zn 147.0 mg·kg~(-1)、Pb 55.0 mg·kg~(-1)、Cu 45.5 mg·kg~(-1)、Cr 21.3 mg·kg~(-1)、As 16.0mg·kg~(-1)、Cd 0.6 mg·kg~(-1);PAHs的总量范围为324.3~1 838.6μg·kg~(-1)。Cu含量和PAHs总量与土壤磁化率χ都具有显著的相关性(p0.05)。PAHs特征比值和频率磁化率χfd的结果分析表明,土壤中PAHs主要来源于石油泄漏和生物质的燃烧;重金属来源复杂,为混合来源,包括人类活动排放和成土母质固有含量。污染评价结果表明,土壤中Cr和As的含量都未超标,Cu、Zn和Cd的含量均超标;参考荷兰土壤修复标准中的目标值,PAHs含量超标的土壤为11.1%,而参照我国土壤污染状况评价技术规定,PAHs含量超标的土壤为22.2%。  相似文献   

17.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH_4~+-N)和总氮(TN)浓度分别为(1 100±70)mg·L~(-1)和(1 520±65)mg·L~(-1),1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L~(-1),其中以有机氮(TON)为主,NH_4~+-N浓度约25 mg·L~(-1);经2级IASBR处理后,出水TN和NH_4~+-N浓度分别稳定在40 mg·L~(-1)和20 mg·L~(-1)以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN≤40 mg·L~(-1)的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L~(-1),经过2级IASBR处理后出水COD降至约770 mg·L~(-1)。  相似文献   

18.
探索了冷冻结晶工艺去除高盐高浓度模拟有机废水的影响因素,将多级冷冻工艺应用于模拟废水和实际废水。结果表明:在其他因素固定的条件下,结冰率越高,有机物去除率和脱盐率就越低;冷冻温度越低,有机物去除率和脱盐率越低;有机物去除率和脱盐率随初始盐浓度或初始COD的增大而降低;冷冻接触面积越大,有机物去除率和脱盐率越高。初始COD为8 000.0 mg·L~(-1),初始盐浓度为8 000.0 mg·L~(-1)的模拟废水在4级冷冻后,COD和含盐量分别降低至240.0 mg·L~(-1)和516.9 mg·L~(-1),去除率分别为97.0%和93.5%。初始COD为55 690.0 mg·L~(-1),初始盐浓度为54 648.9 mg·L~(-1) (以NaCl计)的实际化工废水在经过6级冷冻处理后,COD和含盐量分别降低至491.3 mg·L~(-1)和983.3 mg·L~(-1),有机物去除率为99.1%,脱盐率为98.2%,可达到市政管网的接管要求。上述研究结果为高盐高浓度有机废水的处理提供了新的解决方案。  相似文献   

19.
采用厌氧膜生物反应器/缺氧/好氧膜生物反应器(An MBR/A/OMBR)处理某焦化厂实际焦化废水,通过优化运行参数使该工艺达到最佳运行工况,并考察最佳运行条件下系统长期稳定运行的处理效果。结果表明,向进水添加磷源能满足微生物的生长需求并促进脱氮过程,同时控制OMBR内的pH能较好地保证系统出水NH_3-N的去除率和稳定性。AnMBR/A/OMBR系统的最佳运行条件为:总HRT为61.3 h,进水TP浓度为(2.3±0.3)mg·L~(-1),OMBR内pH为(7.5±0.2)、DO为4~6 mg·L~(-1),回流比为2∶1。当系统进水COD、TOC、NH_3-N和TN的平均浓度分别为(1790±17)mg·L~(-1)、(447.3±9.1)mg·L~(-1)、(107.3±5.2)mg·L~(-1)和(221.9±5.6)mg·L~(-1)时,在最优条件下系统出水的平均浓度分别为(254±76)mg·L~(-1)、(53.8±3.2)mg·L~(-1)、(3.9±1.1)mg·L~(-1)和(70.0±8.8)mg·L~(-1),去除率分别为(85.7±0.9)%、(88.0±0.7)%、(96.4±1.1)%和(68.5±3.7)%。进水中Ⅰ、Ⅱ区芳香族蛋白质类似物和Ⅳ区溶解性微生物副产物的总和所占比例达88.5%,系统出水中Ⅱ区芳香族蛋白质类似物占40%,含量最高。  相似文献   

20.
利用微生物的酶化作用对水体中重金属镉(Cd)进行矿化固定,以减少交换态重金属在环境中的危害;采用X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外谱(FT-IR)等分析测试手段对2株产脲酶矿化菌株(CZW-1和CZW-3)在单一和混合培养体系下生成的矿化产物进行了表征。结果表明,混合培养能提高细菌脲酶活性、提高细菌对Cd的耐受性及对Cd的去除率。单一培养菌株CZW-1和CZW-3的产脲酶活性分别为17.09 U·mL~(-1)和18.23 U·mL~(-1),对Cd的耐受性为2 mmol·L~(-1),对Cd的去除率为78.15%、80.32%;混合培养细菌脲酶活性为20.79 U·mL~(-1),对Cd耐受性为2.5 mmol·L~(-1),对Cd的去除率为85.50%。3组矿化体系矿化产物均为晶格掺杂、椭球状的CdCO_3和CaCO_3,但细菌混合体系矿化产物的粒度更大。混合培养体系由于微生物协同作用对于重金属污染修复具有更好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号