首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以CDC生物膜反应器来模拟给水管网系统,选取聚乙烯(PE)、聚碳酸酯(PC)和不锈钢(SS)3种挂片材质,通过表征异养菌总数、细胞总数和颗粒物浓度研究颗粒物对不同管材出水的影响。结果发现,进水颗粒物浓度和体积浓度分别为63个·mL~(-1)和8.6×104μm3·mL~(-1),反应器稳定运行60 d后,3台不同管材反应器出水的颗粒物浓度和体积浓度都有所增长。其中PC出水的颗粒物浓度和体积浓度分别为4 151个·mL~(-1)和3.5×106μm3·mL~(-1),均高于PE和SS出水,且PC出水中异养菌总数和细胞总数分别为268 CFU·mL~(-1)和1.8×104cells·mL~(-1),也高于PE和SS出水。PC出水中可培养细菌比例从0.24%增加到了1.49%,高于PE和SS出水中可培养细菌比例的0.22%和0.24%。结果显示,颗粒物浓度和体积浓度与出水细菌含量具有显著相关性(R2均在0.96以上)。PC材质的管网更易吸附细菌,出水的颗粒物浓度和细菌数量也远远高于其他2种材质的出水,在实际使用中需谨慎选择使用。  相似文献   

2.
为优化聚氯乙烯(PVC)和聚对苯二甲酸乙二醇酯(PET)废旧混合塑料的浮选分离效果,采用碱液预处理的方式,结合松油醇(TP)作为浮选药剂,以PVC在上浮产物中的回收率及纯度为考核指标,详细考察了不同参数对浮选效果的影响。结果表明:分离PVC/PET混合物的最优工艺为Na OH质量分数2%,预处理时间15 min,预处理温度70℃,TP浓度35mg·L~(-1),浮选时间2 min。在上述最优工艺参数下,混合物中PVC作为上浮产物的回收率和纯度分别可达83%和100%。实验结果对PVC/PET分选的实际应用具有重要的指导意义。  相似文献   

3.
对转底炉炉灰酸浸净化液电沉积锌的工艺条件和参数进行了研究,获得的电积锌最佳电积条件与参数为:锌离子浓度50 g·L~(-1),电解液pH=2,电解温度40℃,电流密度600 A·m~(-2),骨胶浓度6 mg·L~(-1)。在最佳条件下,锌电沉积电流效率接近90%,电积出的锌表面光滑平整,其纯度可达99.9%。  相似文献   

4.
运用响应曲面法(RSM)研究碱解和超声联合作用对污泥破解的影响,以加碱量(0~0.16 g NaOH·(g TS)-1)和超声能量(4 000~20 000 k J·(kg TS)-1)为影响因素,分析其对污泥破解度、溶解性蛋白质和多糖浓度的影响规律,建立了二次多项回归模型,并实现了组合工艺的优化和验证。结果表明,加碱量对污泥破解效果的影响高于超声能量,最佳处理工艺条件为加碱量0.1 g Na OH·(g TS-1)和超声能量12 000 k J·(kg TS-1)。最佳工艺条件下,污泥破解响应值为污泥破解度40.13%,溶解性蛋白质1 365.46 mg·L~(-1)和多糖350.11 mg·L~(-1),与预测值吻合度较高,为碱解和超声联合预处理在污泥破解、厌氧消化预处理领域的应用提供了理论支持和数据支撑。  相似文献   

5.
为揭示污水生物脱氮工艺中污泥菌群间的群体感应作用,建立了柱前衍生-固相萃取-高效液相色谱荧光检测法(HPLC-FLD)定量检测介导细菌种间群体感应信号分子AI-2的方法。取反应器的泥水混合液,经0.45μm滤膜过滤后,用氨基磺酸掩蔽亚硝酸盐干扰,并与2,3-二氨基萘(DAN)发生衍生化反应,衍生化产物用C18固相萃取柱进行固相萃取,经氮吹浓缩后上机分析。采用C18色谱柱(4.6 mm×250 mm,5μm)进行分离,乙腈与水(含0.1%甲酸)作为流动相进行梯度洗脱,使用荧光检测器(激发和发射波长分别为271 nm和503 nm)进行检测。结果表明,该检测方法在1~200 ng·mL~(-1)范围内呈现出了良好的线性关系,检出限为1 ng·mL~(-1),回收率为55.08%~59.25%,相对标准误差为2.98%~10.41%。该方法适用于杂质干扰多的痕量信号分子AI-2定量分析,可为生物脱氮工艺中信号分子AI-2介导群体感应研究提供有效的分析方法。  相似文献   

6.
猪粪沼液的磁混凝预处理工艺优化及评估   总被引:2,自引:0,他引:2  
以高悬浮物、高氮磷与高有机物的猪粪沼液为研究对象,采用磁混凝进行预处理,以浊度去除率为主要考察指标,结合单因素实验和正交实验,优化磁混凝工艺参数,并简要分析磁混凝机制及评估其作为沼液资源化利用的预处理工艺的效能。研究结果表明,优化的磁混凝条件是PAC、PAM、磁种的投加量分别为5 g·L~(-1)、120 mg·L~(-1)、3 g·L~(-1),转速为250 r·min-1。经磁混凝处理后,猪粪沼液的浊度、SS、COD、TP与PO34--P浓度降为2 235 NTU、 3.84 g·L~(-1)、10 302 mg·L~(-1)、133 mg·L~(-1)和62.58 mg·L~(-1),去除率分别为92.90%、84.42%、70.63%、91.90%和50.3%。同时,磁混凝对氨氮与K的去除率较低,分别为6.49%和16.12%,浓度分别为4 072.5 mg·L~(-1)和4 176 mg·L~(-1),利于后续的沼液资源化利用。磁种加载后在混凝过程中被絮体包裹,形成密实的磁絮体,显著提高了沉降性能,沉降时间由传统混凝的25 min降为5 min,同时污泥量显著减少。综上,磁混凝可高效削减沼液的悬浮物,且保留氮与钾等营养物质,促进沼液资源化利用。  相似文献   

7.
尤星怡  冯鑫  潘杨  黄勇  徐林建 《环境工程学报》2019,13(10):2426-2433
针对同步去除与富集磷酸盐溶液的问题,研究了在低磷环境和低磷高磷交替环境下悬浮填料生物膜反应器的除磷能力和释磷能力,采用扫描电子显微镜(SEM)和高通量测序对第0、45和95天的污泥进行了表征。结果表明:低磷环境下好氧出水磷酸盐浓度稳定在0.5 mg·L~(-1)以下,厌氧阶段的最大释磷量为6.05 mg·L~(-1);在低磷高磷交替环境中,好氧出水磷酸盐浓度基本在0.5 mg·L~(-1)以下,富磷溶液浓度最高可达63 mg·L~(-1)。SEM结果表明,同步去除与富集磷酸盐的悬浮填料生物膜反应器中的主要微生物是杆状菌。高通量测序结果表明:第0、45和95天的变形菌门(Proteobacteria)的相对丰度分别为48.3%、57.1%和89.1%,占主导地位;而红环菌科(Rhodocyclaceae)的相对丰度分别为18.1%、19.0%和30.8%,是反应器中的优势菌科;动胶菌属(Zoogloea)是同步去除与富集磷酸盐的悬浮填料生物膜工艺中的主要功能菌。在悬浮填料生物膜工艺中,低磷高磷交替的生长环境下培养的聚磷生物膜能够使好氧出水的磷酸盐浓度达到国家排放标准,并在厌氧阶段得到高浓度的磷酸盐富集溶液,且这种生长环境更适合聚磷微生物的生长。  相似文献   

8.
考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH+4-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5∶1,此条件下出水TP、COD、NH+4-N和TN浓度均能达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。研究同时发现,Al2(SO4)3投加后,活性污泥的沉降性能和污泥活性均有所增强,其中SVI值由93.8 m L·g-1降至81.3 m L·g-1,Zeta电位由-5.5 m V降至-11.8 m V,胞外聚合物EPS含量增加了59.9%,蛋白质与多糖的比例由5.2降至2.1,比耗氧速率由4.2 mg·(g·min)-1升高到6.7 mg·(g·min)-1(以MLSS计)。微生物菌群结构分析结果表明,投药后污泥中微生物种类由投药前的8种减少为6种,硝化菌和反硝化菌比例有所降低,聚磷菌比例升高为6%。在低温(0~10℃)条件下,Al2(SO4)3投加量需有所增加,当铝、磷摩尔比为1∶1时,反应器出水TP、COD、TN和NH+4-N浓度方可达到一级A标准。  相似文献   

9.
以绿色表面活性剂酪蛋白为起泡剂,采用间歇式泡沫分离法去除废水中高浓度Cr(Ⅲ)离子,考察了pH值、空气流量、酪蛋白的添加量、搅拌速度和装液体积5个因素对Cr(Ⅲ)离子去除率的影响。结果表明:当Cr(Ⅲ)离子初始浓度为100 mg·L~(-1)、处理时间为1.5 h时,最佳分离工艺条件为pH=9.5、空气流量0.75 L·min~(-1)、4 g·L~(-1)的酪蛋白的添加量25 m L、搅拌速度800 r·min~(-1)、装液体积1 500 m L,去除率可达99.78%;在最佳工艺条件下,用常规表面活性剂十二烷基苯磺酸钠(SDBS)代替酪蛋白进行对比实验,酪蛋白可以使废水中Cr(Ⅲ)离子去除率提高1.73%。酪蛋白是一种环境友好型物质,作为绿色生物表面活性剂适用于泡沫分离工艺中。  相似文献   

10.
基于UASB-缺氧好氧-混凝沉淀工艺处理印染废水的中试研究   总被引:1,自引:0,他引:1  
采用UASB-缺氧好氧-混凝沉淀组合工艺处理以印染纯棉纤维、涤纶、腈纶和棉混纺织物为主的综合性印染废水。结果表明,控制UASB反应器水力负荷为0.4 m~3·(m~2·h)~(-1)冬季反应器温度低于15℃时降至0.3 m~3·(m~2·h)~(-1))、UASB进水pH=7.0~8.0、活性污泥A反应器D0=0.5~0.8 mg·L~(-1)、B反应器DO=0.2 mg·L~(-1)、接触氧化反应器采用渐减曝气且气水比12:1、混凝剂PAC(配制浓度10%)和PAM(配制浓度0.1%)投加1.2 mL·L~(-1)和0.9 mL·L~(-1)、絮凝30 min,可以实现COD、色度、氮和硫化物的同步去除,出水指标达到并优于《纺织染整工业水污染物排放标准》(GB 4287-2012)表2的直接排放标准,处理效果好。同时,工艺直接运行成本仅为0.624元·m~(-3)废水,普遍低于同类印染废水处理  相似文献   

11.
为了研究污泥发酵液中的主要无机离子和有机成分对鸟粪石结晶法回收磷的影响,选取钙和钾为典型无机离子,以与胞外聚合物(EPS)性质相似的海藻酸钠(SA)和腐殖酸的主要成分富里酸(FA)模拟污泥发酵液主要有机成分,利用小试流化床反应器进行连续流实验。结果表明,随着Ca~(2+)浓度升高,除磷率先下降后上升,生成了无定形磷酸钙沉淀,当Ca~(2+)浓度为100 mg·L~(-1)时,鸟粪石纯度降至14.9%。实验浓度范围内,K+、SA与FA均使鸟粪石纯度降至90%以下,生成少量共沉淀物,但产物晶型仍以规则斜方晶为主,除磷率在80%以上。其中SA主要附着在鸟粪石表面,阻碍鸟粪石晶体的正常生长,随着SA浓度由0 mg·L~(-1)升高到120 mg·L~(-1),产物纯度由96.0%降至77.3%,粉末状晶体增多,使产物平均粒径由0.80 mm降至0.56 mm。  相似文献   

12.
以(NH_4)_2HPO_4活化沙柳纤维制备活性炭纤维,L_(16)(4~5)正交实验优化制备工艺条件,重点研究了活化温度对活性炭纤维结构的影响。同时应用扫描电镜(SEM)对其表面形貌进行表征,通过N_2吸附-脱附测定其孔结构。结果表明,随着活化温度的升高,活性炭得率逐渐减小,碘吸附值先增大后减小,在浸渍比2.5∶1、预氧化温度200℃、预氧化时间90 min、活化温度为800℃、活化时间60 min的条件下,可以制备出比表面积为1 304 m~2·g~(-1)、总孔容为1.004 cm~3·g~(-1)、得率为31.6%、碘吸附值为1 321 mg·g~(-1)的纤维状活性炭。  相似文献   

13.
采用交替厌氧/好氧(An/O)模式下运行的SBR,考察不同溶解氧(DO)浓度(1.0、0.5、0.1 mg·L~(-1))对同步侧流磷回收的强化生物除磷(enhanced biological phosphorus removal,EBPR)主流系统除磷及侧流磷回收性能的影响。结果表明,整个实验阶段主流系统对COD、NH_4~+-N及TN的去除均能稳定达到《城镇污水处理厂污染物综合排放标准》一级A标准,其中TN因出水NO_3~--N浓度的降低而降低,故TN去除率升高。DO为1.0 mg·L~(-1)和0.5 mg·L~(-1)时对磷的去除率分别为99.0%和95.4%,主流系统出水磷达标率分别为96.0%和84.0%。而当DO浓度过低(0.1 mg·L~(-1))时,硝化与吸磷对有限电子受体的竞争及吸磷时间不足导致反应结束时系统内平均磷残留量达1.02 mg·L~(-1),除磷率降至87.2%。鉴于侧流磷回收是对主流系统的磷剥夺,会影响污泥的好氧吸磷能力,继而厌氧阶段释磷量因侧流提取降低。与此同时,DO为1.0 mg·L~(-1)时,侧流磷回收率较其余2个工况高,且此工况下主流系统的厌氧释磷及好氧吸磷能力均最高,考虑到主流工艺的可靠运行及出水稳定性,认为DO=1.0 mg·L~(-1)为最优工况。  相似文献   

14.
利用剩余污泥和厨余垃圾2种有机废物联合发酵,研究了在pH 7.0,温度为35℃,Cu~(2+)投加量分别为0、20、40和100 mg·L~(-1)时,乳酸的含量及其手性的变化规律。同时,探讨联合发酵过程中多糖、蛋白质、氨氮、VFA和pH与乳酸的变化关系。结果表明Cu~(2+)在低浓度时可以促进乳酸的产生:当投加量为20 mg·L~(-1),发酵第3天总乳酸最高浓度为23.22 g·L~(-1),较空白提高了77.06%,其中L-及D-乳酸浓度分别达到6.95 g·L~(-1)和16.27 g·L~(-1)。随着Cu~(2+)含量继续提高,总乳酸产量随之下降:在Cu~(2+)100 mg·L~(-1)时,乳酸最高浓度下降至16.55 g·L~(-1),获得最高值的发酵时间滞后至第6天。响应面分析表明,发酵体系中D-乳酸的光学纯度随Cu~(2+)投加量整体呈上升趋势。深入研究发现,适量Cu~(2+)在厌氧发酵体系过程中促进了多糖和蛋白质的溶出水解速度,从而提高了酸化的发酵潜力。  相似文献   

15.
污泥和茶渣都是典型的固体废弃物。将污泥和茶渣制备成生物炭,采用响应面分析(RSM)的方法优化生物炭的制备过程,主要考察温度、茶渣污泥配比和停留时间的影响,以得率和碘值作为评价生物炭的指标。结果表明:影响污泥-茶渣生物炭得率和吸附碘值的因素次序是:制备温度配比停留时间,温度和时间的交互影响较为明显。生物炭制备优化的条件是:制备温度为300℃,配比为0.7,停留时间为1.8 h,模型预测的得率和碘值分别是54.47%和624.07 mg·g~(-1),而实际测定的得率和碘值分别(53.50±0.50)%和(605.72±8.62)mg·g~(-1),生物炭有作为吸附剂的潜力。可见,RSM方法用于优化污泥-茶渣生物炭的制备是可行和合适的。  相似文献   

16.
为了考察多相芬顿-活性炭工艺对饮用水中微生物消毒效果的影响,采用中试对活性炭工艺与多相芬顿-活性炭工艺进行了对比研究。该中试对水中溶解性有机物(DOC)、总细菌16S rRNA、三磷酸腺苷(ATP)及胞外多聚物(EPS)含量与性质进行了分析。结果表明,多相芬顿-活性炭工艺能够将出水DOC浓度控制在(0.90±0.11) mg·L~(-1),并使得EPS减少83.2%,降低EPS中蛋白质/多糖(PN/PS)比值,其凝聚性明显下降,在相同氯浓度投加情况下水中微生物16S rRNA基因拷贝数去除量提高了3.5个对数量级,ATP浓度降低为0.016 nmol·L~(-1)。因此,多相芬顿-活性炭工艺明显提高了对有机物的去除能力,显著降低EPS中蛋白质的含量,使得微生物凝聚性变差,微生物更加容易被消毒剂灭活,该工艺强化了饮用水消毒效果。  相似文献   

17.
利用微生物的酶化作用对水体中重金属镉(Cd)进行矿化固定,以减少交换态重金属在环境中的危害;采用X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外谱(FT-IR)等分析测试手段对2株产脲酶矿化菌株(CZW-1和CZW-3)在单一和混合培养体系下生成的矿化产物进行了表征。结果表明,混合培养能提高细菌脲酶活性、提高细菌对Cd的耐受性及对Cd的去除率。单一培养菌株CZW-1和CZW-3的产脲酶活性分别为17.09 U·mL~(-1)和18.23 U·mL~(-1),对Cd的耐受性为2 mmol·L~(-1),对Cd的去除率为78.15%、80.32%;混合培养细菌脲酶活性为20.79 U·mL~(-1),对Cd耐受性为2.5 mmol·L~(-1),对Cd的去除率为85.50%。3组矿化体系矿化产物均为晶格掺杂、椭球状的CdCO_3和CaCO_3,但细菌混合体系矿化产物的粒度更大。混合培养体系由于微生物协同作用对于重金属污染修复具有更好的效果。  相似文献   

18.
为探究剩余污泥酶-热碱联合水解生产蛋白质工艺工业化利用的可能性,建立了1 m3·d-1的剩余污泥(含水率80%)的中试水解系统。通过对酶解时间、复合添加量及碱解温度等关键工艺因素优化,获得了中试规模污泥联合水解的最佳工艺条件;通过酶和热碱水解动力学研究,明确了联合水解过程的限速步骤。结果表明:在日处理量为1 m3剩余污泥(含水80%)的中试水解过程中,酶解时间为1.5 h、复合酶投加量为1%、污泥浓度为30 g·L-1、碱解时间1.5 h、碱解温度80℃时,蛋白质溶出效果最佳,上清液中蛋白质浓度为2 160 mg·L-1;污泥酶解过程符合米氏方程,碱解过程符合零级动力学方程,二者的水解速率分别为0.709 mg·(L·min)-1和11.046mg·(L·min)-1;与碱解相比,酶解是剩余污泥联合水解的限速步骤。研究结果可为污泥联合水解工艺产蛋白质的产业化应用提供必要的技术参数。  相似文献   

19.
从广州市某污水处理厂缺氧段活性污泥中分离筛选出一株反硝化菌,以该菌株为研究对象,鉴定后对该菌株进行脱氮条件最优化实验在此基础上,分析其厌氧氨氧化能力。结果表明:在柠檬酸钠浓度为9 g·L~(-1),KNO_3浓度为1 g·L~(-1),溫度为35℃,pH为6.8的条件下,同时控制接种量为2.5%,即控制初始菌株浓度为10~7 mL~(-1)时,2 d后8号菌能达到87%的最佳NO_3~--N去除率;在厌氧氨氧化能力检测实验中,培养液中生化反应以反硝化作用为主,在第3·5天发现厌氧氨氧化反应,因此推测这株菌具有厌氧氨氧化反应能力。经初步鉴定,该菌株为苏云金芽孢杆菌(Bacillus thuringiensis)。  相似文献   

20.
以苏南某10万t·d~(-1)市政污水厂污泥浓缩池剩余污泥为研究对象,利用非直接接触管槽式超声反应器,在20~100 kHz扫频(周期2 s)超声条件下分析超声输入功率和超声时间对污泥脱水和减量化效果的影响。结果表明,在20~100 k Hz扫频超声污泥处理工艺过程中,从处理成本和处理效率考虑,优化后的超声输入功率为0.3W·mL~(-1)、超声作用时间为0.5 min。与原工艺相比,泥饼折算体积?(含固率20%)、混合液含固率ρ、混凝剂用量以及每天污泥处理成本分别减少了(43.8±1.2)%、(50.0±1.6)%、(38.9±1.7)%和(41.9±2.2)%。此外,核算改造后污泥处理经济效益,设备投资回收时间为17个月。可见,引入新技术工艺后,该污水处理厂污泥处理处置和管理运行费用大幅降低,并可实现盈利,经济效益明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号