首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多环芳烃的毒性及其治理技术研究   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是一类长久存在于环境中,具有致癌、致畸与致突变等特性的环境优先污染物。文中概括介绍了PAHs的来源、毒性及毒理,重点阐述了目前国内外对PAHs污染采取的处理方法及治理技术,包括微生物修复、植物修复和微生物-植物联合修复等。  相似文献   

2.
水环境多环芳烃源解析研究进展   总被引:3,自引:0,他引:3  
城市化和工业化给环境带来的潜在危害引起人们对环境质量的重视.污染物来源解析研究的成果为环境管理提供了有效的工具.在查阋大量文献的基础上,综述了应用于水环境尤其是沉积物中多环芳烃源解析的主要理论方法和应用模型,并初步提出了沉积物中多环芳烃源解析方法.  相似文献   

3.
城市化和工业化给环境带来的潜在危害引起人们对环境质量的重视。污染物来源解析研究的成果为环境管理提供了有效的工具。在查阅大量文献的基础上,综述了应用于水环境尤其是沉积物中多环芳烃源解析的主要理论方法和应用模型,并初步提出了沉积物中多环芳烃源解析方法。  相似文献   

4.
在乌鲁木齐市南、北设置2个采样点,从2011年3-12月采集可吸入颗粒物(PM2.5、PM2.5-10)样品,分析了美国环境保护署优控的13种多环芳烃(PAHs)的浓度,采用比值法、主成分分析法和多元线性回归法对乌鲁木齐市大气PM2.5、PM2.5-10中PAHs的来源进行了分析。结果表明,科学院站PM2.5中13种PAHs的总质量浓度平均值为247.2ng/m3,变动范围为1.14~2 113.33ng/m3;新大站PAHs的总质量浓度平均值为240.84ng/m3,变动范围为4.96~1 359.41ng/m3。而科学院站PM2.5-10中13种PAHs的总质量浓度平均值为57.78ng/m3,变动范围为1.18~519.87ng/m3;新大站的总质量浓度平均值为49.18ng/m3,变动范围为1.38~412.52ng/m3。比值法分析结果表明,所采集样品的2/3来自煤和生物质的燃烧排放;主成分分析法和多元线性回归分析法结果表明,采暖期汽油和煤源对PM2.5中总PAHs的贡献率为46%,而非采暖期混合源的贡献率高达85%。采暖期汽油和柴油源对PM2.5-10中总PAHs的贡献率为66%,而非采暖期混合源的贡献率为78%。  相似文献   

5.
南昌市大气PM2.5中多环芳烃的来源解析   总被引:1,自引:0,他引:1  
在南昌市布设5个采样点,分别代表工业区、居住区、交通干线区、商业区以及郊区,于2007年7~8月进行大气PM2.5的采样.根据5个采样点测得的数据,通过因子分析法判断南昌市大气PM2.5中多环芳烃的主要来源,再利用多元线性回归法确定各主要来源对多环芳烃的贡献率.结果表明,南昌市多环芳烃的主要来源为车辆排放源、高温加热源、燃煤污染源,对多环芳烃的贡献率分别为37.9%、28.2%、22.0%.  相似文献   

6.
针对修复焦化厂高浓度多环芳烃污染土壤高成本的现实,采用以非食用性植物油、生物柴油、表面活性剂及其乳化合成的微乳液为淋洗剂,比较不同淋洗剂的淋洗效果。结果表明乳化合成的微乳液对焦化厂土壤中多环芳烃的总去除率高于单独使用表面活性剂为淋洗剂对土壤中多环芳烃的总去除率,说明生物柴油及植物油与表面活性剂乳化形成的微乳液对原污染土壤中的多环芳烃具有显著的增溶作用。1%TW-80和2.5%TW-80对土壤中多环芳烃总去除率分别为11%和14%;以2.5%TW-80为原料乳化合成的微乳液的淋洗去除率较以1%TW-80为原料乳化合成的微乳液高,总去除率分别为15%~30%和11%~18%;以生物柴油为原料乳化合成的微乳液的淋洗去除率较以植物油为原料乳化合成的微乳液高,分别为17%~30%和15%~23%,且对多环芳烃的去除率与其辛醇水分配系数(logKow)呈线性相关关系。  相似文献   

7.
2012年3-8月对北京西三环地区大气颗粒物进行分级采样,利用气相色谱(GC)/质谱(MS)联用仪对颗粒物中多环芳烃(PAHs)含量进行测定.结果表明,检出的16种PAHs总质量浓度(∑16PAHs)平均为46.73ng/m3;苯并[a]蒽(BaA)等6种单体浓度与∑16PAHs呈良好线性关系;PAHs粒径分布特征表明,其更易富集在细颗粒物上;不同环数PAHs分布特征为:3环>4环>5环>6环>2环,随着颗粒粒径减小,高环数PAHs含量增加.温度、湿度和紫外线(UV)指数与∑16PAHs呈负相关.通过特征化合物比值分析法对PAHs进行源解析发现,采样期间PAHs主要来源为燃烧源,交通源影响微弱.  相似文献   

8.
多环芳烃污染土壤生物修复的强化方法   总被引:6,自引:0,他引:6  
生物降解是去除环境中多环芳烃(PAHs)的重要途径,通过采取一些强化措施,如使用表面活性剂,添加营养物质和提供共代谢底物等,可显著提高PAHs降解速度和程度,为生物修复技术的成功应用提供前提。在分析中,对近年来国内外在PAHs污染土壤生物修复强化方面的研究进展进行了综述。  相似文献   

9.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)作为环境中常见的持久性有机污染物,因其致癌、致突变、致畸和难降解的特性备受关注。地球关键带是维系地球生态系统功能和人类生存的关键区域,选取燕山地球关键带的雁栖湖站点,对地表水、表层土壤(0~10 cm)和地下水3种环境介质进行调查研究,旨在探索16种PAHs的分布情况。结果表明:1)地表水、土壤、地下水中的16种PAHs含量范围分别为9.78~2 221.3 ng·L-1、76.21~285.03μg·kg-1、21.45~1 521.13 ng·L-1,均值分别为548.42 ng·L-1、195.77μg·kg-1、492.54 ng·L-1,地表水中的平均浓度高于地下水;2) 3种环境介质中PAHs分子质量分布呈现大体相似特征,具体表现为单体PAH中萘(Nap)占主导地位,2~3环低分子量PAHs占比大于4环,5~6环最低;3)地表水和地下水的PAHs质量分数占比基...  相似文献   

10.
多环芳烃污染土壤生物修复的强化方法   总被引:3,自引:0,他引:3  
生物降解是去除环境中多环芳烃(PAHs)的重要途径,通过采取一些强化措施,如使用表面活性剂,添加营养物质和提供共代谢底物等,可显著提高PAHs降解速度和程度,为生物修复技术的成功应用提供前提。在分析中,对近年来国内外在PAHs污染土壤生物修复强化方面的研究进展进行了综述。  相似文献   

11.
多环芳烃污染土壤的植物与微生物修复研究进展   总被引:3,自引:0,他引:3  
概括介绍了多环芳烃污染土壤的植物修复、微生物修复和植物 微生物联合修复的原理、优缺点、影响因素及国内外研究进展 ,并对生物修复的未来发展进行了展望  相似文献   

12.
改性膨润土对水体中多环芳烃的吸附   总被引:2,自引:0,他引:2  
改性膨润土被广泛地应用于吸附水体中重金属离子和有机污染物,但关于改性膨润土吸附水体中多环芳烃混合物的动力学研究鲜见报道。利用十二烷基三甲溴化铵和十二烷基磺酸钠对膨润土进行改性,并将之应用于吸附水体中萘、蒽、菲和芘4种多环芳烃,考察了吸附剂投加量、时间和温度等条件对吸附效果的影响。实验结果表明,在25℃、吸附时间40 min、起始浓度为1.25 mg/mL、改性膨润土的投加量为4 g/L的条件下,该吸附剂对萘、蒽、菲和芘的吸附率分别为99.1%、99.6%、98.7%和98.9%。改性膨润土对水体中4种多环芳烃的吸附机理服从准二级动力学方程,该吸附剂吸附等温线服从Langmuir方程。  相似文献   

13.
利用PUF被动采样器于2008年8月—2009年7月采集了西安大气样品,研究了大气气相中多环芳烃(PAHs)的含量和季节分布特征。结果表明,西安大气气相中16种美国EPA优控的PAHs(Σ16PAHs)质量浓度为10.9-489.6 ng/m3(平均为143.4 ng/m3),四季具有明显的季节差异,依次为夏季(62.5 ng/m3)〈春季(80.1 ng/m3)〈秋季(175.8 ng/m3)〈冬季(255.2 ng/m3)。气相中PAHs主要以3-4环为主,占总量的86.5%-94.1%。利用主成分分析法判断四季气相中PAHs的污染来源类型,主要为燃煤和机动车尾气及生物质燃烧的复合源。  相似文献   

14.
南昌市夏季PM_(2.5)中多环芳烃来源解析   总被引:1,自引:0,他引:1  
在南昌市设立了5个不同功能区采样点,分别为居民区、工业区、商业区、交通干线区以及郊区,于2008年夏季进行PM2.5采样,对样品进行测定和分析后,通过因子分析法判断PM2.5中多环芳烃(PAHs)的主要污染源,再利用多元线性回归法确定各主要污染源对PAHs的贡献率。结果表明,南昌市夏季PM2.5中PAHs的主要污染源为车辆排放源、高温加热源、燃煤污染源,它们对PAHs的贡献率分别为37.9%、28.2%和22.0%;要控制南昌市夏季PM2.5中的PAHs,主要是要对机动车尾气排放量进行控制,并加强机动车尾气治理工作。  相似文献   

15.
空气中多环芳烃的研究进展   总被引:22,自引:0,他引:22  
介绍了国内对大气中气态,颗粒态PAHs的研究概况,室内外空气中PAHs污染与城市交通间的相关性,PAHs总量代表物,硝基PAHs及人体接触PAHs的生物指标。  相似文献   

16.
为分析污泥与葡萄糖不同配比进行联合厌氧消化对污泥中多环芳烃(PAHs)去除效能及细菌群落的影响,在中温(35±1)℃条件下,以未添加葡萄糖的污泥厌氧消化为对照(CK),研究了活性污泥与葡萄糖按不同有机质含量(挥发性固体(VS)质量比)分别为1∶0.1、1∶0.3和1∶0.5对PAHs去除效能及细菌群落的影响。结果表明,葡萄糖添加量的增加并未进一步提高PAHs的降解能力。P1实验组(VS_(污泥)∶VS_(葡萄糖)=1∶0.1)对消化污泥中∑PAHs的去除能力最强;降解速率可达到(60.56±8.10)%;且高分子质量PAHs(≥4环)的降解速率显著高于低分子质量PAHs(2~3环)(P0.05)。苯并(a)蒽、?、苯并(b)荧蒽和苯并(k)荧蒽的平均降解速率均大于62%;而苯并(a)芘的降解速率达到(59.60±14.05)%。此外,使用16S r RNA技术,检测消化污泥中细菌群落发现,向污泥中添加葡萄糖,可能通过促进Actinobacteria、 Bacteroidetes_vadin HA17、 Spirochaetes、 Planctomycetes和norank_f_Anaerolineaceae菌群的生长,从而提高污泥中PAHs的去除能力。  相似文献   

17.
本文比较系统地讨论了空气中多环芳烃(PAHs)的研究现状。重点介绍了空气颗粒物及气相中多环芳烃的采样分析新办法,城市大气及居民室内外空气中多环芳烃的污染状况及其来源,简单介绍了人体接触多环芳烃的水平,指标及空气中多环芳烃的健康风险评价的研究概况。共引文献129篇。  相似文献   

18.
2005年7月至8月监测了南开大学校内及其东、西、南三校门外长跑路段处的大气总悬浮颗粒物(TSP)中16种优控多环芳烃的污染状况。GC/MS分析结果表明,晚间长跑时段中校内外多环芳烃总量为(128.74±23.50)、(417.40±204.55)ng/m3,校外约为校内的3.24倍,PAHs含量特征显示交通污染源影响显著;多环芳烃浓度与车流量呈正相关性,且怠速车辆增多也使其浓度增大;校内上午的多环芳烃总量约为晚间1.32倍,这主要受交通污染源和风速、湿度等气象条件的共同影响。  相似文献   

19.
利用低温等离子体(NTP)净化车用柴油机尾气中的颗粒相多环芳烃(PAHs),基于电晕放电的原理,设计了NTP发生装置。使用色谱质谱联用仪分析经过NTP净化前后柴油机尾气中颗粒相多环芳烃的含量,观察NTP对颗粒相多环芳烃的净化效果。结果表明,颗粒相小分子量PAHs除菲、蒽外,其他4种多环芳烃的含量显著增加,其中萘、苊变化率达1 130.4%和758.57%;大分子量PAHs除苯并(ghi)芘外,多环芳烃的含量降低达80%以上;NTP对柴油机尾气中颗粒相多环芳烃含量及毒性当量的净化率分别达58.4%和82.8%。  相似文献   

20.
西安市大气中多环芳烃的季节变化及健康风险评价   总被引:1,自引:0,他引:1  
对西安市2009年6月-2010年5月空气中的总悬浮颗粒(TSP)和气态样品进行了连续采样,利用GC—MS对16种PAHs进行分析。∑PAHs浓度(气相+颗粒相)范围为39.93~1032.46ng/m^3,平均值为197.34ng/m^3;其中,冬季大气中∑PAHs浓度最大,相对浓度的范围为31.21%~72.98%,而夏季的浓度最小;检测出16种2~6环的PAHs,其中以3—4环为主。利用特征分子比值法和因子分析进行源解析,发现研究区PAHs的主要来源为燃煤和机动车尾气排放。通过苯并(a)芘(BaP)等效毒性(BEQ)和苯并(a)芘等效致癌浓度(BaPE)进行健康风险评价,结果显示,西安大气中PAHs的毒性具有明显的季节差异,特别是秋季和冬季大气中PAHs对人类的健康存在较大的潜在威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号