首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
使用铁代替铂作为阴极催化剂,制作含铁碳布空气阴极并构建单室MFC(Fe-C-ACMFC)。以乙酸钠为燃料,通过稳态放电法和循环伏安测试等测试手段,分析了不同铁含量对Fe-C-ACMFC产电性能的影响以及性能最优Fe-C-ACM-FC的连续运行稳定性。结果表明,随着铁含量的增加,Fe-C-ACMFC启动期开路电压(OCV)逐步提高,达到峰值后,随着铁含量的增加而降低;同样,Fe-C-ACMFC极化性能和功率密度等产电性能也随铁含量的增加先升高再降低;当铁含量为0.7 mg/cm2时,MFC的产电性能最优,最大开路电压为593 mV,表观内阻为89Ω,最大功率密度达到12 907 mW/m3,并且经循环伏安测试,电池放电容量几乎没有变化,表明Fe-C-ACMFC的性能比较稳定,能够长期运行。由于铁催化剂价格远远低于铂催化剂,因此,铁碳布空气阴极MFC更利于推广应用。  相似文献   

2.
考察了氧化石墨烯(GO)修饰活性炭(AC)空气阴极(AC-GO阴极)对微生物燃料电池(MFC)产电性能以及有机物去除率的影响。实验结果表明,向AC阴极中掺杂一定量的GO可以降低阴极的内阻,提高阴极电化学反应速率。其中,GO掺杂量为0.5 mg·cm-2的AC-GO0.05阴极性能最好,该AC-GO0.05阴极MFC体系的最大功率密度(Pmax)为767 mW·m-2,是空白AC阴极体系Pmax(459 mW·m-2)的1.7倍,化学需氧量(COD)去除率和库伦效率(CE)均明显高于空白AC阴极体系。  相似文献   

3.
设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能。结果表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m−2,而内阻最低为92 Ω;该MFC可用于直接快速检测高浓度有机物的BOD,对醋酸钠底物的线性检测限为1 280 mg·L−1,在此底物浓度下MFC的检测时间为31.2~66 h,线性可决系数R2为0.97~0.99;对于GGA底物的线性检测限为1 250 mg·L−1,在此底物浓度下MFC的检测时间为33~67 h,线性可决系数R2为0.98。本研究可为MFC型BOD检测传感器的性能优化提供参考。  相似文献   

4.
为考察藻种类及阴极材料对藻阴极型微生物燃料电池性能的影响,以微藻及水绵为阴极生物,分别采用碳毡,碳纸,载铂碳纸为阴极材料,构建了微生物燃料电池。结果显示,以碳毡作为阴极材料时,2种藻阴极微生物燃料电池最大功率密度均高于以碳纸为阴极材料时相应的功率密度。采用载铂碳纸为阴极材料、天然湖水为阴极液,微生物燃料电池最大功率密度分别达到165.1 mW/m2(微藻阴极)和119.9 mW/m2(水绵阴极)。电化学测试表明,藻类生长形态影响了阴极的电化学特征,进而影响到了微生物燃料电池的性能。藻阴极MFC长期运行时,膜污染是藻阴极微生物燃料电池功率密度下降的关键因素之一。SEM-EDS分析显示,膜两侧污染主要原因分别是微生物生长和磷酸盐晶体沉积。  相似文献   

5.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1 Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

6.
采用双室微生物燃料电池(MFC)反应器,考察了不同初始Cr(VI)浓度下化学阴极与生物阴极MFC的产电及Cr(VI)去除情况。结果表明,在各Cr(VI)浓度梯度 (20、28、32、36、40和44 mg/L)下生物阴极MFC的产电及Cr(VI)去除性能均较化学阴极MFC更优,生物阴极最大输出电压为180.1 mV,是化学阴极的1.3倍。随着初始Cr(VI)浓度的递增,两者对Cr(VI)去除的差异越明显,最终在Cr(VI)浓度为44 mg/L时,生物阴极MFC的Cr(VI)去除率为66.4%,较化学阴极提高了55.1%。进一步由循环伏安扫描、电镜扫描及X-射线能谱分析证实生物阴极MFC较化学阴极MFC产电及去铬性能优越的主要原因除了生物阴极电极上电化学活性微生物的催化作用外,Cr(VI)还原产生的不导电Cr(III)沉积物在其电极上附着较少也是一个关键因素,该Cr(III)沉积物中含有Cr2O3。  相似文献   

7.
张倩  柳丽芬 《环境工程学报》2021,15(4):1270-1278
含难降解污染物的工业废水,处理难度大、成本高,如未达标却大量排放,会造成严重的水体污染并威胁生态平衡和人类健康。为了开发高效、节能和可持续的环保技术,制备了新型催化电极膜组件,并内置活性炭颗粒或负载二氧化锰的活性炭颗粒,以扩大阴极的总体积,研究了其在11 L上流式微生物燃料电池与膜生物反应器耦合系统中对焦化废水的处理效果,考察了其对系统的产电性能和废水处理效果。结果表明,在产电和水处理成效上,催化电极膜内放置负载二氧化锰的活性炭颗粒阴极的耦合体系>催化电极膜内置活性炭颗粒阴极的体系>碳纤维布电极内置活性炭颗粒阴极的体系。碳纤维负载催化剂电极膜及内置活性炭颗粒阴极的系统,最大功率密度为1 041.35 mW·m−3,比仅用碳纤维布的电极膜内置活性炭颗粒阴极的对照组,提高了7.4倍,系统内阻也由309 Ω减小至104 Ω,有效降低了能量损耗。催化电极膜内置负载二氧化锰活性炭颗粒阴极的耦合系统,可高效去除焦化废水中的COD和${ {\rm{NH}}_4^ + }$-N,去除率最高可达95.75%和92.81%;COD去除负荷为1.55 kg·(m3·d)−1,比对照组提高了25%。增大阴极曝气速率,可提高COD去除效率(另一焦化废水,出水COD值低于40 mg·L−1,达到一级排放标准);COD去除负荷达到1.67 kg·(m3·d)−1。该耦合体系对焦化废水具有较好的处理效果和较高的产电能力,可为焦化废水等工业废水的处理提供一种有效可行的新方法。  相似文献   

8.
利用Fe0活化Na_2S_2O_8产生具有强氧化性的SO-4·催化降解目标物结晶紫。研究不同因素(阴极液初始pH值、S_2O_8~(2-)浓度、共存离子Cl-浓度)对Fe~0/~(-1)-微生物燃料电池(MFC)体系中结晶紫降解率及产电性能的影响。结果表明,阴极液初始pH值降低和~(-1)浓度增加有利于体系中结晶紫的降解和最大功率密度的提高,阴极液共存离子Cl~-浓度的增加会阻碍结晶紫的降解,最大功率密度随Cl-浓度增加呈现先增加后降低的趋势。综合体系中结晶紫的降解率和最大功率密度,在温度为30℃,Fe~0投加量为1 mmol·L~(-1),阴极液初始pH值为3、~(-1)浓度为2 mmol·L~(-1)时,180 min后浓度为0.16 mmol·L~(-1)的结晶紫降解率达到95.62%,最大功率密度为637.245 m W·m~(-3),内阻约为400Ω。降解过程符合一级动力学方程。  相似文献   

9.
首次构建了以生物质活性炭纤维笼电极为空气阴极的微生物燃料电池(biomass activated carbon fiber cage-shaped air-cathode microbial fuel cell,BACFC-ACMFC),并以厌氧污泥接种,以葡萄糖作为碳源,研究了该MFC在连续运行条件下的产电性能、电池内阻情况和最优运行条件。结果表明:在一个运行周期内,该MFC最佳运行条件为:体积浸没比为50%、pH=8、污泥投加量为1.8 g·L-1。当外接电阻为1 000 Ω时,该MFC最大输出电压为257.89 mV,最大输出功率密度为4 082.99 mW·m-3,电池内阻为419.88 Ω,与目前其他阴极材料的微生物燃料电池相比,该新型生物质活性炭纤维笼空气阴极微生物燃料电池功率密度较高,内阻较低。SEM分析可知,阴极具有较大的比表面积和孔隙率,有利于与氧气的充分接触。在浸入溶液中的半面阴极上发现大量微生物附着,这可能和氧气还原有关。  相似文献   

10.
回流式无膜生物阴极微生物燃料电池脱氮   总被引:2,自引:0,他引:2  
为有效提高脱氮效率、降低MFC运行成本,设计了一种新构型回流式无PEM膜的生物阴极微生物燃料电池,处理生活污水,回收电能。研究了该系统的启动情况及稳定运行时的污水脱氮效果和产电性能。结果表明,系统稳定运行后,输出电压0.53 V,反应器内阻406.8Ω,最大功率密度201.9 mW/m3。连续进水、停留时间12 h、回流比为1及阴极连续曝气条件下,COD去除率85%以上,氨氮去除率93.94%,总氮去除率44.96%,总氮去除较作参比的A2/O系统提高8.17%。  相似文献   

11.
阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。  相似文献   

12.
构建了双室微生物燃料电池(MFC),并应用于污水BOD的检测。优化了MFC型BOD传感器的检测条件,分析了传感器进行污水BOD检测的特征。结果表明,以A2/O污水处理工艺中厌氧段污泥进行接种,双室MFC型BOD传感器2周内完成启动,所产电流达到稳定。传感器的最佳检测条件为外接电阻500Ω,添加缓冲溶液并维持待测水样pH为7.0,添加35 mg/L的L-半胱氨酸作为吸氧剂维持阳极室厌氧环境,阴极室富氧水流量为20 mL/min。利用MFC产生的电流峰值准确检测污水水样BOD浓度,传感器检测范围为10~50 mg/L,检测时间小于3 h;利用MFC产生的电荷量准确检测污水水样BOD浓度,检测范围为10~100 mg/L,检测时间小于10 h。利用MFC电流峰值和电荷量检测污水水样BOD浓度,偏差均小于15%,传感器运行稳定,寿命较长。  相似文献   

13.
在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。  相似文献   

14.
微生物燃料电池(MFCs)去除废水中有机物已经进行了大量研究,然而MFCs去除营养盐的能力较弱是将来产业化的障碍之一。研究了以铁锰氧化细菌为催化剂的生物阴极稳定产电的同时实现生物硝化反应的可行性以及其影响因素,并对生物阴极中的铁锰氧化细菌以及硝化细菌进行了计数。以铁锰氧化细菌为催化剂的生物阴极MFCs的启动时间为150~200h,运行稳定时,最高电压达600 mV。研究表明,该生物阴极在稳定产电的同时实现了生物硝化反应,其NO3--N的生成速率为0.792mg/(L.h),NO2--N最高质量浓度为1.56mg/L;阴极进水中NH4+-N以及DO浓度均是重要影响因素;对生物阴极中的铁锰氧化细菌以及硝化细菌计数结果表明,铁锰氧化细菌为7.5×106 MPN/mL,硝化细菌为9.3×105 MPN/mL。  相似文献   

15.
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响。利用竹炭比表面积大、吸附能力强等特性,将其作为"三合一"膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力。实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22W/m3增大到1.42W/m3,同时内阻降低了80.85%(由235Ω降为45Ω);库仑效率由15.0%增大到25.6%。说明MFC阳极室填充竹炭可以显著促进MFC的产电性能。  相似文献   

16.
为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果.加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%.在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2∶3时,SMFC最大功率密度为776 mW/m2.随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4∶1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3%、66.7%和80.4%.因此,温度相对较低时,外加酶强化效果更明显;与单种酶相比,混合酶对SMFC产电性能和污泥减量化的强化效果更显著.  相似文献   

17.
微生物燃料电池(MFC)是一种将废水中化学能转化为电能的技术,近年来被证实可以用来同步脱氮。目前,NH4+-N的硝化与反硝化多是在MFC阴极室进行,其存在曝气条件下反硝化菌难以富集的问题,造成反硝化速度慢。为解决上述问题,本研究旨在构建一种基于阴离子交换膜的(AEM)MFC,即AEM-MFC,使阴极好氧硝化过程产生的NO2-与NO3-能通过阴离子交换膜迁移至厌氧阳极室,并在厌氧阳极室发生还原,使得反硝化不需在好氧阴极室进行。结果表明,当阴极投加200 mg/L NH4+-N时,AEM-MFC能在66 h完全去除总氮,而同样条件下基于阳离子交换膜(CEM)的MFC,即CEM-MFC,则需要26 d达到相同的脱氮效果。在阴极室投加不同浓度NH4+-N(从50到500 mg/L)条件下,AEM-MFC连续运行7个月,其产电与脱氮效果稳定。相比于传统生物脱氮方法,AEM-MFC不需要在运行过程中在加入酸或碱调节pH,所需COD/N较少,并能够同时回收电能。  相似文献   

18.
陈文婷  李轩  付国楷 《环境工程学报》2020,14(10):2710-2718
为处理高盐榨菜废水(mustard tuber wastewater treatment,MTWW),实现系统同步产电脱盐的目的,构建了以生物电化学为基础的微生物脱盐燃料电池(microbial desalination cell,MDC),探讨了铁氰化钾和水阴极MDC产电及脱盐效果,并对系统微生物群落进行了分析。结果表明:在相同脱盐时间内,铁氰化钾组盐度去除率为90.30%,略高于水阴极组;在整个脱盐周期内,铁氰化钾组产电性能优于水阴极组;随着脱盐时间的延长,铁氰化钾组产电性能略有下降,而水阴极组产电性能显著增强;铁氰化钾组阳极优势菌属为Methanosaeta(23.55%)、Geobacter(14.09%)和vadinHA17(8.64%),水阴极组阳极优势菌属为vadinHA17(18.17%)、Methanosaeta(13.00%)和Methanosaeta(9.79%),其中Geobacter为产电菌,vadinHA17为水解发酵菌,MethanosaetaMethanosaeta为常见产甲烷菌。铁氰化钾组阳极和水阴极组阳极中产甲烷菌占比很高,然而,产甲烷菌对系统产电脱盐有不利作用,因此,有必要寻找合适的抑制产甲烷菌产生的方法。运行后期,水阴极组阴极中出现了产电菌,极大地降低了阴极过电势,提高了系统的产电性能。上述研究结果可为MTWW的资源化处理提供参考。  相似文献   

19.
利用反硝化筛选培养基从稳定运行的MFC-AA/O反应器阴极板上分离纯化反硝化细菌,经16S rRNA鉴定后,接种于双室MFC的阴极,测试其产电能力以筛选同步产电反硝化细菌,之后对MFC的运行温度和pH进行优化,最后通过扫描循环伏安曲线分析其产电机理。结果表明:分离获得的一株反硝化菌经鉴定为铜绿假单胞杆菌(Pseudomonas aeruginosa),该菌可实现同步产电脱氮,最高输出电压可达168 mV左右,其脱氮反应的最优pH为7.5,最适温度为30 ℃;在生物阴极起催化产电反硝化作用的可能是Pseudomonas aeruginosa的分泌物,其作为中介体,可从电极获得电子,完成硝酸盐的还原。上述结果说明,Pseudomonas aeruginosa作为接种MFC生物阴极的纯菌,可以实现同步产电反硝化,为反硝化生物阴极MFC的实际应用奠定基础。  相似文献   

20.
研究了磷酸活化对石墨电极上氧还原反应的影响,并考察了磷酸活化石墨材料应用于微生物燃料电池阴极的可行性。首先以循环伏安和电化学阻抗谱等电化学方法考察了经磷酸活化的石墨材料的氧还原能力,发现经质量分数为85%磷酸活化12 h后其氧还原能力最强;然后将活化石墨材料应用于微生物燃料电池的阴极,进行极化曲线和功率密度曲线的测定。结果表明,磷酸活化阴极微生物燃料电池的最大功率密度可达7.92 W/m3,为未活化石墨阴极微生物燃料电池的3.4倍;同时进行了电化学比表面积的测定及FTIR的分析测定,结果表明,磷酸活化石墨颗粒的比表面积(7.716m2/g)较未活化颗粒(10.940 m2/g)略有减小,但其表面官能团的数量和种类发生了很大变化。表面官能团的变化可能是导致石墨材料氧还原能力增强及MFCs产电性能提高的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号