首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电镀废水反渗透(RO)浓水具有盐度高、难降解有机物浓度高、含重金属等特点,是电镀废水处理工艺提标改造的难点。采用臭氧-曝气生物滤池(BAF)组合工艺,对电镀废水反渗透(RO)浓水中有机物进行处理,使出水COD浓度达到《电镀污染物排放标准》中标准。考察了废水初始p H、臭氧浓度和反应时间等因素对臭氧氧化效果的影响,以及水力停留时间(HRT)和气水比对BAF单元COD去除效果的影响。经优化后的系统运行工况为:臭氧氧化单元中废水初始p H值为10.0,臭氧浓度为31.96 mg·L~(-1),反应时间为40 min;BAF的HRT为3 h,气水比为5∶1。在最佳工况下,当进水COD为180~240 mg·L~(-1)时,经组合工艺处理后COD去除率达78.6%,平均出水COD浓度为47 mg·L~(-1),达到了标准的要求。  相似文献   

2.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

3.
以生活污水处理厂二级生物处理出水为研究对象,利用固相萃取、吸附树脂层析等手段,研究了臭氧氧化过程中进出水及不同分级组分的发光细菌急性毒性的变化,揭示了无机离子浓度对臭氧氧化出水急性毒性的影响,并采用三维荧光光谱对急性毒性相关的物质组分进行了解析。结果表明,在反应时间为15 min,臭氧投加速率为2.1 mg·(L·min)-1,臭氧氧化出水的急性毒性明显下降,出水的急性毒性仅为进水的24.7%。水样不同分级组分的生物毒性测试结果显示,生物处理出水中的亲水性物质和疏水中性物质分别贡献了44.6%和27.8%的毒性当量。当生物处理出水的氯离子含量为75~400 mg·L~(-1)时,经臭氧氧化后,出水的急性生物毒性与氯离子浓度成正相关关系,当生物处理出水的硫酸根离子和硝酸根离子含量分别在150~300 mg·L~(-1)和20~110 mg·L~(-1)变化时,经臭氧氧化后,出水的急性生物毒性变化不大,结合三维荧光光谱的分析结果,臭氧氧化出水中急性毒性物质可能主要存在于芳香族蛋白质类似物(Ⅱ区)和类腐殖酸类物质(Ⅴ区)中。  相似文献   

4.
城市污水厂二级处理出水深度处理组合工艺研究   总被引:2,自引:0,他引:2  
为了研究臭氧-曝气生物滤池二级处理出水深度处理组合工艺的处理效果,采用臭氧-曝气生物滤池(biological aerated filter, BAF)组合工艺对城市污水处理厂二级生化处理出水进行深度处理。结果表明,组合工艺对造成水中色度的主要物质腐植酸和富里酸类有机物和嗅味物质中的二甲基三硫和二甲基异莰醇(MIB)能够进行有效去除。臭氧氧化能够显著提高后续BAF单元对CODMn的去除。在进水CODMn6~8 mg/L、色度为25~30度、浊度约为8 NTU的条件下,当臭氧投加量为5~6 mg/L、BAF的水力停留时间为1~1.5 h时,出水CODMn< 5 mg/L、色度<5度、浊度<1 NTU,出水水质可满足生产工艺对回用水的水质要求。  相似文献   

5.
以化工园区废水厂二级出水作为实验废水,采用臭氧氧化工艺对其进行处理,采用分子量分级、亲疏水性分离和傅里叶红外等手段对臭氧氧化前后水质进行了系统分析。结果表明,在进水COD为126 mg/L,臭氧氧化60 min的条件下,COD和UV254的去除率分别为37.9%和55%;臭氧氧化对水中疏水性物质去除效率高于亲水性物质,部分疏水性物质氧化成亲水性小分子有机物。臭氧氧化可以改变废水中有机物的分子结构,使水中分子量小于1×103k Da的有机物比例从56.3%提高至71.2%,分子量大于1×105k Da的有机物比例由原来的24.2%下降至9.6%。红外光谱分析表明,臭氧氧化具有一定的选择性,可显著去除水中含不饱和键、酚类、醇类等有机物,但对饱和烷烃基本无降解效果。  相似文献   

6.
针对西北村镇集雨窖水低温、低浊、微污染,且常规混凝—超滤技术处理效果不佳的问题,采用KMnO_4强化混凝—超滤技术处理集雨窖水,考察了KMnO_4投加量对去除污染物的强化效果。结果表明,KMnO_4的最佳投加量为1.0mg/L,预氧化5min后,高锰酸盐指数、出水在254nm处吸光度(UV_(254))、氨氮、TP和浊度的去除率分别达26.7%、25.8%、51.4%、75.0%、96.8%,与常规混凝—超滤技术相比,KMnO_4预氧化可使高锰酸盐指数及UV_(254)的去除率分别提高约6、5百分点。KMnO_4预氧化可以有效提高常规混凝—超滤技术的出水水质,强化对有机污染物的去除效果,但对氨氮、TP、浊度去除的强化效果较弱。  相似文献   

7.
采用臭氧微气泡曝气生物膜反应器(MOABR)对实际校园污水二级生化处理出水进行深度处理,考察了臭氧投加量对MOABR运行性能和生物膜活性的影响,并与传统曝气生物滤池(BAF)深度处理工艺进行比较。结果表明,MOABR工艺中,臭氧微气泡曝气处理效果优于空气微气泡曝气,臭氧投加量对MOABR运行性能有明显影响。在臭氧投加量与进水COD比值(O/C)为0.007 1时,MOABR运行性能最优,COD去除率及去除负荷分别为61.7%、2.25kg/(m~3·d),氨氮去除率及去除负荷分别为17.4%、0.32kg/(m~3·d),臭氧投加量过高对生物膜活性有抑制作用。MOABR处理能力显著高于BAF,在最优臭氧投加量条件下(O/C为0.007 1),MOABR平均COD去除负荷为BAF的2.5倍,平均氨氮去除负荷为BAF的1.7倍。MOABR中微气泡臭氧氧化的作用为改善废水可生化性,COD的去除仍主要依靠生物降解实现。  相似文献   

8.
以采用"SBR+混凝+Fenton氧化+BAF"组合工艺处理的晚期垃圾渗滤液各级出水为研究对象,考察了HA、FA和HyI等溶解性有机物(DOM s)在各个工艺处理过程中的变化。结果表明,组合工艺COD和NH3-N去除率分别达到98.4%和99.3%;对DOM s的去除率为98.3%,其中胡敏酸(HA)、富里酸(FA)和亲水性有机物(HyI)的去除率分别为98.3%、99.5%和95.7%。各处理工艺中SBR和混凝工艺对HA和HyI的去除贡献较大,Fenton氧化工艺对FA去除率较高。Fenton氧化和BAF联用,可以有效去除难降解的溶解性有机污染物,使出水达到《生活垃圾填埋污染控制标准》(GB16889-2008)排放标准。  相似文献   

9.
利用生物吸附(biological absorption,AB)-多级缺氧/好氧(anaerobic/oxic,A/O)-活性焦滤池组合工艺对城市污水进行处理研究。结果表明:该组合工艺出水COD、TN、TP平均浓度为20、8.5、0.25 mg·L~(-1),对COD、TN、TP平均去除率为95%、76.5%、80%,3个工艺段对有机污染物的平均去除率分别为55%、26%、14%。其中生物吸附段主要去除粒径较大的颗粒态有机物,多级A/O段可以去除进水中53%左右溶解性有机物;活性焦滤池利用活性焦丰富的中孔结构有效吸附多级A/O出水中难生物降解的芳香类及环烷类有机物。该组合工艺能实现高标准出水、高效脱氮除磷、能源节约、资源回收,是具有良好应用前景的污水处理工艺。  相似文献   

10.
为进一步提高微污染水中氨氮、有机物去除效果,采用响应曲面法对强化混凝工艺处理微污染水的影响因素和去除效果进行研究,实验以混凝剂投加量、助凝剂投加量和助凝剂投加点为影响因素,浊度、氨氮和COD去除效果为响应值,利用Design-Expert软件对实验数据进行处理,得到二次响应曲面模型,各因素间的交互作用对响应值的影响以及优化水平值。模型优化结果显示,强化混凝处理微污染水的最佳工艺条件为:PAFC投加量17.80 mg·L~(-1),PAM投加量0.39 mg·L~(-1),PAM于快速搅拌结束投加,此时浊度、氨氮、COD的去除率分别为68.03%、10.92%和30.2%,最终通过模型的验证证明了响应曲面法用于优化强化混凝工艺处理微污染水的可行性和有效性。  相似文献   

11.
在污水深度处理过程中,臭氧氧化通常用来去除二级出水中的难降解有机物,提高后续深度处理工艺的处理效率。针对臭氧氧化对二级出水中亚硝胺类消毒副产物的作用,以城市污水厂二级出水为研究对象,采用固相萃取及超高效液相串联三重四级杆质谱联用仪作为分析测试手段,对二级出水中亚硝胺类消毒副产物的分布及臭氧化特性进行研究。结果表明,二级出水中7种亚硝胺类物质浓度由大到小依次为NPYR、NDIP、NDBA、NDMA、NMEA、NDPA和NDEA,均值分别为250、45.96、31.17、28、4.92、4.71和2.15 ng·L~(-1)。随着臭氧投加量的提升,臭氧氧化会使二级出水中的亚硝胺类物质含量增加,特别是NPYR、NDIP、NDBA和NDMA4种物质;但亚硝胺类物质的生成势却随之降低,且在臭氧氧化作用下亚硝胺的生成势降低量明显高于其自身的增加量,臭氧投加量越大,二者之间的差异越明显。臭氧氧化导致亚硝胺生成势的降低作用可以减少后续深度处理工艺及消毒过程中该类物质的生成,有利于保障再生水的回用安全。  相似文献   

12.
以某化工园区污水处理厂综合废水为对象,采用"膜生物反应器(MBR)—O_3催化氧化—曝气生物滤池(BAF)"组合工艺进行深度处理。结果表明:(1)MBR适宜的DO、混合液悬浮固体质量浓度(MLSS)分别为3、3 000~4 000 mg/L。粉末活性炭(PAC)的投加对COD的去除有明显促进作用,并可提高系统的抗冲击负荷,延缓MBR膜通量的下降速率,减少溶解性微生物产物和胞外聚合物的积累,有效缓解膜污染。(2)采用O_3催化氧化作为BAF的前处理单元,可节约30%(质量分数)的O_3投加量,BAF出水COD和氨氮平均去除率分别提高9.9、5.1百分点。(3)在PAC投加量100mg/L、O_3投加量50mg/L、O_3接触氧化时间2h、BAF水力停留时间6h的条件下,组合工艺出水COD、氨氮、TP平均分别为76.5、3.6、0.4mg/L,达到江苏省《化学工业主要水污染物排放标准》(DB 32/939—2006)一级标准。而且,废水中特征有机污染物得到有效降解,应急毒性有较大程度降低。  相似文献   

13.
针对颜料废水有机物浓度含量高、水质波动大、可生化性差等特点,实验采用了UASB-PACT(powdered activated carbon treatment)组合工艺在常温下对颜料废水进行中试研究。实验共进行了119 d,分2个阶段进行,第1阶段为低浓度运行阶段,进水COD逐步提升至3 000 mg·L~(-1)左右,经过36 d的运行,系统出水COD可稳定保持在500 mg·L~(-1)以下,UASB、PACT反应器对COD的平均去除率分别为37.0%和80.5%;第2阶段为负荷提高阶段,共运行了83 d,UASB、PACT反应器对COD的平均去除率分别为53.9%和81.7%。76 d后在平均进水浓度为6 207.75 mg·L~(-1)的条件下,出水COD500 mg·L~(-1)。在工程应用阶段,经过6个月的调试,在进水量1 920 m3·d-1、COD为5 000 mg·L~(-1)的条件下,UASB反应器的出水COD1 500 mg·L~(-1),PACT出水COD在300~500 mg·L~(-1)之间波动,去除率分别为50.9%和75.3%。实验结果表明,针对有机颜料废水,采用UASB-PACT组合工艺能够达到很好的处理效果,出水满足《污水排入城镇下水道水质标准》(CJ 343-2010)中A级排放要求。  相似文献   

14.
臭氧氧化对二级出水有机物(EfOM)特性机制的影响   总被引:1,自引:0,他引:1  
开展了臭氧氧化对二级出水有机物(effluent organic matter,Ef OM)的去除效能研究,并进一步采用超滤分离、三维荧光光谱等方法,系统研究了不同臭氧投加量下,Ef OM的分子量分布、亲疏水特性以及荧光特性的变化规律。结果表明,臭氧化去除Ef OM的效果有限,但能够有效分解二级出水中具有强烈紫外吸收的有机物。此外,臭氧能优先氧化分解二级出水中大分子有机物,有效提高二级出水的可生化性。臭氧氧化过程中,分子质量(molecular weight,MW)100 k Da的有机物组分被完全氧化分解,10 k DaMW100 k Da和1 k DaMW10 k D的有机物组分含量总体呈下降趋势,而MW1k Da的有机物组分随臭氧投加时间的延长含量不断上升。臭氧化后,Ef OM中疏水组分减少,亲水组分升高;酸性组分减少。随着臭氧投量的增加,蛋白质与腐殖酸类物质的荧光吸收强度迅速下降。  相似文献   

15.
针对污水处理厂污泥脱水滤液有机磷污染现状,采用树脂分级、傅里叶红外光谱和气相色谱质谱等方法解析其污染特征和组分结构,进而开展强化去除研究,并初步探究OP的降解转化过程。结果表明:WXA污泥脱水滤液OP和出水OP平均含量分别为10.1 mg·L~(-1)和0.16 mg·L~(-1),脱水滤液的回流可能影响出水稳定;亲水性OP和疏水性OP平均含量分别为8.58 mg·L~(-1)和1.59 mg·L~(-1),OP的生物利用度仅为23.8%,表明以难生物降解形态为主,进一步的组分解析结果验证了该推测;强化去除研究表明,最佳条件是O3投加量为30 mg·L~(-1)、pH为12.0和H2O2投加量为1.5 mL,去除率高达82.9%。O3/H2O2氧化技术可实现脱水滤液难降解OP的高效去除,从而保证出水达标排放。  相似文献   

16.
针对受硝酸盐污染的水源水,以琼脂为反硝化细菌的碳源和微生物载体,通过生物反硝化作用脱除水源水中的硝酸盐,并利用曝气生物滤池(BAF)去除琼脂反应器出水中残留的少量CODMn和NO2--N等污染物。实验结果表明,水源水自然接种的条件下,可以顺利启动琼脂反应器;在温度为25℃左右,琼脂反应器在进水NO3--N约25 mg/L、水力停留时间1.5 h时,能获得70%的硝酸盐氮去除率;曝气生物滤池在水力停留时间0.5 h、气水比2.8时,可控制最终出水的CODMn和NO2--N分别在5.0 mg/L和0.10 mg/L以下;琼脂反应器的脱氮效果与温度、进水NO3--N浓度及水力停留时间等有关。研究指出,琼脂反应器与曝气生物滤池构成的组合系统能较好地脱除水源水中的硝酸盐并且能控制最终出水水质,不会导致二次污染,从而获得合格的饮用水源水。  相似文献   

17.
臭氧预氧化-BAF工艺深度处理垃圾渗滤液   总被引:4,自引:0,他引:4  
以广东省江门市垃圾填埋场垃圾渗滤液为研究对象,对经SBR生化处理和聚合硫酸铁混凝后的垃圾渗滤液,采用臭氧-BAF(曝气生物滤池)工艺进行深度处理。该工艺优点在于:臭氧高级氧化技术使大分子有机污染物降解成二氧化碳和水,或者小分子有机污染物,有利于后继BAF的生化处理,且臭氧处理过后废水的色度明显降低,是废水处理的有效方法之一。而后采用曝气生物滤池对垃圾渗滤液进行进一步处理,对COD进一步去除。结果表明,当臭氧的加入量为150 mg/L,BAF停留时间>4 h,出水COD低于85 mg/L,稳定达到国家GB 16889-1997《生活垃圾填埋污染控制标准》一级排放标准,臭氧氧化法处理每吨垃圾渗滤液的费用为4.8元。  相似文献   

18.
针对再生水厂膜生物反应器(MBR)出水水质特征,对后续深度处理工艺中与纳滤组合的预处理技术进行筛选.通过对臭氧、活性炭、臭氧-活性炭3种预处理技术对比,分析3种预处理方式对有机物的去除效率及对分子尺寸的影响规律.实验结果表明,3种预处理技术对MBR出水中有机物的平均去除率分别为6.6%、31.7%和36.6%;市政污水...  相似文献   

19.
以垃圾渗滤液MBR出水为研究对象,采用臭氧-活性炭组合工艺对其进行深度处理。相比单一臭氧处理和单一活性炭吸附,臭氧-活性炭组合工艺能提高COD及NH_3-N的去除率,并且显示出良好的协同作用。实验中利用三维荧光光谱和凝胶色谱对水质进行分析,同时考察了活性炭种类及预处理方式、活性炭用量、pH及臭氧浓度对COD及NH_3-N去除率的影响。结果表明:pH=4.54、臭氧浓度为1.34 mg·min~(-1)、活性炭投加量为10 g·L~(-1)、臭氧处理时间为30 min、活性炭吸附时间为180 min,当垃圾渗滤液MBR出水COD为1 550 mg·L~(-1),NH_3-N为75 mg·L~(-1)时,经处理后,COD浓度为93 mg·L~(-1),NH_3-N浓度为12 mg·L~(-1),COD的去除率达到94%,NH_3-N的去除率达到84%,实现了垃圾渗滤液MBR出水的达标排放。pH对污染物的去除有较为明显的影响,高pH有利于NH_3-N的去除,但是过高的pH不利于COD的去除。同时,提高臭氧和活性炭的投加量能明显提高COD及NH_3-N的去除率。  相似文献   

20.
为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na_2SO_3作除氧剂、Cu~(2+)作催化剂对原水进行预除氧,投加量分别为150 mg·L~(-1)和1 mg·L~(-1);沉淀剂CuCl投加量为100 mg·L~(-1)。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号