首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

2.
南京市冬春PM_(2.5)和PM_(10)污染特征及影响因素分析   总被引:2,自引:2,他引:0  
黄军  郭胜利  王希 《环境工程》2015,33(12):69-74
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈"双峰双谷型"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。  相似文献   

3.
对2013年北京市58 d重污染日PM_(2.5)浓度水平进行了分析,并用克里格插值法统计了重污染期间不同风向PM_(2.5)不同浓度区间的国土面积。结果显示2013年北京市重污染日主要集中在冬季,占到全年天数的15.9%,且重污染日PM_(2.5)平均浓度为218μg/m3;重污染日PM_(2.5)空间分布较为均匀且统计的平均浓度在150μg/m3以上的国土面积约占总面积的82%;重污染期间重度污染(150μg/m3)以上面积占比分别为南风(87%)、东风(81%)、西风(70%)、北风(66%);重污染日不同风向下ρ(NO_3~-)、ρ(NH_4~+)、ρ(SO_4~(2-))之和约占ρ(PM~(2.5))的60%~65%,且各组分浓度相差不大。  相似文献   

4.
根据2014-2016年泰山区大气污染物PM_(10)和PM_(2.5)的监测数据,对PM_(10)和PM_(2.5)浓度的变化特征和二者的相关性以及PM_(2.5)占PM_(10)的比重进行分析。结果表明:受地形、气象和冬季燃煤取暖的共同影响,近三年的PM_(10)、PM_(2.5)月均浓度都具有明显的季节变化规律,冬季最高,夏季最低,春季、秋季居中。环保部门等采取了一系列措施,三年来空气中PM_(10)和PM_(2.5)的浓度逐年下降。PM_(10)和PM_(2.5)的浓度具备一定的相关性,且PM_(2.5)在PM_(10)中比重很大,可认为两者的变化趋势一致。秋冬季节是泰山区细颗粒物污染较重的季节,环境危害较大。在雾霾天气频发的阶段,PM_(10)和PM_(2.5)的防治更应成为大气污染防治工作的重中之重。  相似文献   

5.
为深入了解唐山市采暖期PM_(2.5)污染成因与来源,采用在线监测设备于2017年12月1日—2018年1月28日连续监测了唐山市PM_(2.5)及其水溶性离子和碳质组分(OC、EC)的质量浓度变化,并结合部分常规气体污染物及气象数据进行对比分析.结果表明:①相对湿度的增加和风速的降低促进了污染的发展.②清洁、轻中度污染和重污染时,SOR (硫氧化率)分别为0. 05、0. 08、0. 20,NOR (氮氧化率)分别为0. 05、0. 12、0. 26,随着污染的加重,SO_2、NOx向PM_(2.5)中SO_4~(2-)、NO3-的二次转化现象更加明显.③清洁时,ρ(OC)、ρ(EC)、ρ(SO_4~(2-))和ρ(Cl-)占PM_(2.5)化学组分(水溶性离子、碳质组分)质量浓度总和的68%,主要污染源为燃煤;清洁、轻中度污染和重污染时,ρ(NO_2)/ρ(SO_2)分别为0. 96、1. 14、1. 44,ρ(NO3-)/ρ(SO_4~(2-))分别为0. 94、1. 57和1. 75;重污染时,ρ(SO_4~(2-))、ρ(NO3-)、ρ(NH_4~+)三者之和占PM_(2.5)化学组分质量浓度总和的61%,二次污染物成为主要污染源.④观测期,唐山市轻中度污染和重污染时,受经北京市、天津市等唐山市西部地区方向气团影响频率分别为61%、63%,受该方向气团影响时,ρ(NO_2)/ρ(SO_2)、ρ(NO3-)/ρ(SO_4~(2-))明显增大.研究显示,相较于燃煤排放物在大气污染物中的占比变化,随着污染的加重,工业工艺和机动车尾气排放产生的污染物占比明显增大,区域传输对大气污染影响不可忽略,政府有必要开展区域联防联控、停产限产和限行限号的措施.  相似文献   

6.
利用郑州城区9个国控监测点位PM_(10)、PM_(2.5)的日监测数据,研究2013~2016年间郑州城区大气颗粒物质量浓度变化特征及其对气象因素的响应。结果表明,2013~2016年间郑州城区环境空气污染总体状况改善趋势较为显著,重度及以上的污染天数占全年有效天数的比例逐年降低,PM_(10)、PM_(2.5)浓度逐年下降;PM_(10)和PM_(2.5)浓度月均值变化基本一致,浓度变化均呈"U"型分布。PM_(10)和PM_(2.5)质量浓度变化具有明显的季节性特征,冬季其质量浓度最高,春季和秋季次之,夏季最低。选取气温、气压、风速、相对湿度和降水量等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM_(10)、PM_(2.5)浓度的影响。相关性分析结果表明,与PM_(10)、PM_(2.5)浓度显著相关的气象因素存在季节性差异,风速、相对湿度和降雨量是影响郑州城区大气颗粒物质量浓度的主要气象因子。  相似文献   

7.
运用高精度手持式PM_(2.5)速测仪(CW-HAT200)对保定市城区大气颗粒物PM_(10)和PM_(2.5)浓度的日变化、月变化、季变化规律进行了连续1年的测定,结果表明:保定市PM_(10)和PM_(2.5)年平均浓度为213μg/m~3、134μg/m~3,是国家空气质量二级标准的1.4倍和1.8倍;PM_(10)和PM_(2.5)四季变化均表现为冬季最高,春、秋季次之,夏季最低,且变幅较大;PM_(2.5)、PM_(10)各月变化趋势基本相同,1月份浓度最大,污染严重,7月份浓度最小,污染较轻;日变化曲线呈双峰形,早晚高、白天低,低值出现在12:00-16:00;PM_(2.5)/PM_(10)全年平均比值为62.80%,除5、8月外,其余各月均50%,属于严重污染;PM_(10)和PM_(2.5)的确定系数为0.9704,由此可见两者的相关性较高。综上分析可知,人类活动主要影响了PM_(10)、PM_(2.5)的产生,而气象条件是影响大气颗粒物扩散的最主要原因,要想从根本上抑制大气污染的产生,必须采用先进的生产工艺、减少污染物的排放,尤其是在气流稳定的季节应加以严格控制。  相似文献   

8.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

9.
基于泉州市区2014年1、4、7、10月的空气质量自动监测数据,分析了PM_(10)与PM_(2.5)污染水平并对其季节变化趋势进行探讨。结果表明,监测期间内,泉州市区PM10日均浓度变化范围为0.025~0.376mg/m3,PM2.5日均浓度变化范围为0.010~0.346mg/m3,PM_(10)与PM_(2.5)的年均日浓度分别为0.067mg/m3和0.034mg/m3。泉州市区大气中的PM_(10)与PM_(2.5)浓度均呈现出明显的季节变化趋势,春冬两季浓度高于夏秋两季。利用HYSPLIT-4模型对PM_(10)与PM_(2.5)浓度出现异常高值的时段进行气团后推轨迹推导,结果显示长距离传输和区域传输在不同时段对本地污染的主导作用不同。  相似文献   

10.
《环境科学与技术》2021,44(3):53-62
为探究气象条件变化对PM_(2.5)的分布影响,该研究利用CAMx及WRF模型,分别模拟了中国中东部地区2017-2019年第4季度PM_(2.5)浓度(ρ(PM_(2.5)))分布及气象条件变化,并对"2+26"城市、长江三角洲地区的ρ(PM_(2.5))及气象因子进行时空变化分析。结果表明:2017-2019年,太行山东麓沿线污染最为严重,季度平均ρ(PM_(2.5))达150~250μg/m3,长江三角洲地区季度平均ρ(PM_(2.5))为35~115μg/m3;2019年太行山东麓及燕山南麓地区气象条件优势明显,西北气流频次增加,同时相对湿度下降,大气边界层升高,降水量增加,地区ρ(PM_(2.5))下降6~18μg/m3;长江三角洲沿海地区降水量增加,风速增大,ρ(PM_(2.5))下降8~16μg/m3。数值模拟结果显示,2017-2019年,受降水、相对湿度、边界层、风速以及主导风向的影响,2019年中国中东部地区冬季ρ(PM_(2.5))降低6~18μg/m3,不同区域影响ρ(PM_(2.5))变化的气象因子不同。  相似文献   

11.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析   总被引:1,自引:0,他引:1  
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.  相似文献   

12.
本文分析了2015年3月至2016年2月广州某区细颗粒物(PM_(2.5))和气态污染物(SO_2、NO_2、CO、O_3)质量浓度的日变化特征,并对PM_(2.5)和气态污染物之间质量浓度的相关性进行分析,结果表明:PM_(2.5)、SO_2、NO_2、CO、O_3大气污染物存在一定规律的日变化特征。PM_(2.5)与SO_2、NO_2、CO、O_3全年质量浓度的相关系数范围分别为0.184~0.219,0.271~0.436,0.170~0.368和0.051~0.318,存在一定的线性正相关关系。  相似文献   

13.
该研究基于2013年11-12月的宁波市空气质量监测数据和气象资料数据,分析了PM_(2.5)质量浓度变化特征,探讨了PM_(2.5)与其它粒径颗粒物、气体污染物以及多个气象因子之间的相关性及影响规律,构建了包含气象和污染气体因子的逐步回归模型,综合分析了2类因子对宁波市PM_(2.5)浓度的影响。研究结果表明:(1)研究时间段内的宁波PM_(2.5)质量浓度范围为(100.66±72.98)μg/m~3,超过粗颗粒PM_(2.5-10)的质量浓度,是可吸入颗粒物的主要组成部分。(2)PM_(2.5)与3种污染气体均表现出显著的相关性,其中与CO的质量浓度相关性最高,R=0.85。风速与PM_(2.5)呈现负相关,受西北-北风向影响下的PM_(2.5)浓度要明显高出其它风向影响下的浓度。降水对PM_(2.5)影响显著,降水日的PM_(2.5)平均质量浓度随降水强度呈现幂函数递减,为非降水日的48.4%。非降水日的PM_(2.5)浓度与相对湿度显著正相关,与日照时数显著负相关。(3)逐步回归结果表明,气象和污染气体两类因子能够解释PM_(2.5)浓度82.4%的变异。其中,CO是影响宁波市秋冬季PM_(2.5)浓度的首要显著因子。本研究对明确城市PM_(2.5)污染特征和影响因素具有参考价值和意义。  相似文献   

14.
为准确掌握垫江县城区大气环境中细颗粒的污染状况,选择2016年9月1日—2017年2月28日大气自动观测站的数据研究分析,结果表明:垫江县城区大气环境中PM_(10)和PM_(2.5)的平均质量浓度分别为79mg/m~3和68mg/m~3,PM_(10)的月平均质量浓度均大于PM_(2.5),PM_(2.5)占PM_(10)的比例在84.6%~90.0%。多元分析结果可以看出,大气环境中的PM_(10)和PM_(2.5)具有相类似来源,气象条件对垫江县城区大气颗粒物污染影响较大。HYSPLIT轨迹模型分析表明,秋冬季节大气重污染时段,垫江县城区大气环境中颗粒物来源受到西南和西北气团影响较大。  相似文献   

15.
该研究选取北京大兴南海子公园植被区与亦庄非植被区PM_(2.5)数据进行研究,对比分析植被区与非植被区PM_(2.5)质量浓度日变化、月变化和年变化特征,典型天气下的PM_(2.5)质量浓度变化。结果表明:植被区PM_(2.5)质量浓度整体上低于非植被区,二者日变化均呈典型的双峰曲线,白天低,夜间高,最小值出现在下午15:00左右;从不同月份看,PM_(2.5)质量浓度最高值出现在冬季的1月、2月,最低值出现在6月、8月,整体表现为冬季月份明显高于其余月份;气温、降雨和大风均与PM_(2.5)浓度呈负相关,晴天时,温度较高,有利于PM_(2.5)浓度降低;降雨有利于空气颗粒物沉降,有效清除大气PM_(2.5)污染,降低其浓度;大风天气会增加大气环流,有助于颗粒物在大气中扩散,使PM_(2.5)不易滞留,从而导致浓度降低。降雨和大风均能导致PM_(2.5)污染降低,且城市森林植被对于PM_(2.5)有明显降低作用。  相似文献   

16.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

17.
本文首先分析了2016年太原市城区环境空气PM_(10)浓度状况;其次根据太原市颗粒物源解析结果分析了开放源对太原市城区环境空气中PM_(10)的影响,并采用箱模型测算了太原市开放源PM_(10)起尘量;然后以环境统计数据为基础估算了人为源PM_(10)排放量;最后综合开放源起尘量和人为源排放量估算了太原市大气颗粒物PM_(10)的排放总量。结果表明:2016年太原市大气颗粒物PM_(10)排放总量约为6.44万t。其中,开放源PM_(10)起尘量约为3.37万t;人为源颗粒物PM_(10)排放量约为3.07万t。  相似文献   

18.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   

19.
根据青岛国家基本气象站2014年-2016年的气温资料,青岛大气成分站的2014年-2016年能见度、PM_(2.5)资料,针对PM_(2.5)与能见度、温度进行相关性分析,以及PM_(2.5)随季节分布规律及成因分析。结果表明,PM_(2.5)与能见度成强负相关性关系;温度与PM_(2.5)成强正相关性,并呈现出一定跟随性,这为以后定量计算PM_(2.5)的温度影响因子及预测PM_(2.5)浓度提供了依据;PM_(2.5)浓度分布与季节成规律性分布,冬春季节PM_(2.5)浓度高,能见度低;夏季高温多雨,PM_(2.5)浓度低,能见度高。  相似文献   

20.
该文分别以香烟和大气尘为PM_(2.5))源,采用4种不同过滤级别的聚丙烯纤维滤料对这2种PM_(2.5))进行过滤性能考察,探讨香烟PM_(2.5))作为大气PM_(2.5))模拟物的可行性。对于选用的4种不同过滤级别的聚丙烯纤维滤料,香烟PM_(2.5)和大气PM_(2.5)的初始浓度对其过滤效率没有显著影响.在1~8 cm/s的工程滤速范围内,4种滤料对香烟PM_(2.5)和大气PM_(2.5)过滤效率都随滤速增加而线性降低。在特定滤速下,4种滤料对香烟PM_(2.5)与大气PM_(2.5)的过滤效率有很好的线性相关性。滤速分别为1、3、5、7 cm/s时,4种滤料对大气PM_(2.5)与香烟PM_(2.5)过滤效率的斜率比值分别为1.02、1.05、1.07、1.09,滤速越大、回归系数k值越大。研究结果表明:在该文实验条件下,香烟PM_(2.5)适宜作为大气PM_(2.5)模拟物,通过测试滤料对香烟PM_(2.5)过滤效率和回归系数k值可以预测该滤料对大气PM_(2.5)的过滤效率,为准确评价空气净化滤材过滤大气PM_(2.5)的性能提供科学理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号