首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
膨润土吸附-微波催化氧化协同处理葡萄酒废水   总被引:2,自引:1,他引:1  
采用膨润土吸附-微波催化氧化技术处理葡萄酒生产废水,考察了膨润土用量、H2O2用量、微波辐照时间、微波功率、pH等5个单因素对葡萄酒生产废水处理效果的影响。确定了最终反应条件为:膨润土用量2.6 g、H2O2用量2.1mL、功率720 W、加热时间25 min、pH为3.5。在此条件下,COD去除率达到了80%以上。结果表明,该方法可快速有效地处理葡萄酒生产废水。  相似文献   

2.
以活性炭为催化剂、H2O2为氧化剂的催化氧化技术来处理DSD酸母液树脂吸附出水。处理效果比单纯的活性炭吸附或H2O2氧化要好的多。在温度25℃,线速度0.10m/h,pH3.50,H2O2添加量0.35%,处理500mL水样后,脱色率达到90%以上,TOC去除率达到40.0%以上。  相似文献   

3.
臭氧催化氧化工艺深度处理印染废水   总被引:1,自引:1,他引:1  
采用正交实验对催化剂NiO/γ-A12O3的制备条件进行优化,并探讨臭氧催化氧化法对于印染废水的深度处理效能.结果表明,最优的催化剂制备条件为:浸渍液浓度为3%、浸渍时间为4h、灼烧温度为450℃、灼烧时间为3h.臭氧催化氧化反应15 min时,COD浓度由84.22 mg/L降低至50.00 mg/L以下;氨氮浓度由10.88 mg/L降低至5.01 mg/L;色度去除率达到69%,明显高于单纯臭氧氧化的反应效率.  相似文献   

4.
针对柠檬酸生化尾水生化性差、色度高的特点,以MnOx-CeOx复合双金属氧化物作为催化剂,采用臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺对柠檬酸生化尾水进行了深度处理。结果表明,在臭氧投加量为30 mg·L−1,臭氧进气量为1 m3·h−1,水力停留时间为60 min的条件下,臭氧催化系统对柠檬酸生化尾水COD去除率为35.4%,平均COD由110 mg·L−1降至70 mg·L−1;平均色度由90倍降至15倍,色度去除率为83.3%;出水BOD5/COD由0.08提升至0.23,废水生化性得到显著提高。在气水比为4∶1、水力停留时间为6 h的MBBR系统中,出水COD则进一步降至32~40 mg·L−1,色度维持在10倍左右。此外,该组合工艺具有良好的运行稳定性,综合运行成本较低(0.79 元·t−1)。以上研究结果表明,臭氧催化氧化-MBBR组合工艺对柠檬酸生化尾水具有较好的综合处理效果,可为柠檬酸行业污水处理系统的升级改造提供参考。  相似文献   

5.
采用SBR装置,对应用微波诱导活性炭纤维催化氧化实现污泥减量进行了研究。结果表明,在微波功率为800W,微波辐照时间为50s,每克SS加入0.19g活性炭纤维条件下,微波诱导活性炭纤维催化氧化污泥的分解率明显高于单独微波消解处理。将微波诱导处理后的污泥返回到处理系统中,随着被微波诱导处理的污泥占反应器内污泥的比例(污泥处理比例)的增大,污泥表观产率系数随之减小,污泥减量也越明显;污泥处理比例为5%(体积分数,下同)、10%、15%时,与对照系统相比,处理系统污泥减量分别为24.3%、43.6%、62.2%;随着污泥处理比例的增大,处理系统出水溶解性COD(SCOD)呈升高趋势,但系统仍能保持其生物处理能力,SCOD去除率在85%以上。处理系统和对照系统的氨氮降解速率常数及污泥耗氧速率相差不大,处理系统的硝化能力及污泥活性基本没有受到微波诱导催化氧化作用的影响。  相似文献   

6.
微波催化氧化修复技术处理有机氯污染土壤   总被引:1,自引:0,他引:1  
采用微波催化氧化修复技术处理常州某农药厂有机氯农药污染场地和南通某化工厂有机氯污染场地土壤,考察不同参数条件下实验装置对污染土壤的处理效能。结果表明,在微波功率18kW、微波辐射时间20min、土壤处理量400kg/h、土壤含水率15%、活性炭添加量0.03kg/kg的最佳条件下,实验装置运行稳定,有机氯农药污染土壤中氯丹去除率可达70%左右;有机氯污染土壤中邻二氯苯、石油烃总量、1,2-二氯乙烷、苯酚去除率分别可达到99.98%、91.29%、98.52%、74.74%。研发的污染土壤微波催化氧化修复技术及实验装置对有机氯污染土壤的修复具有一定的普适性。  相似文献   

7.
双组分甲苯、氯苯的微波辅助催化氧化及机理   总被引:1,自引:0,他引:1  
通过微波辅助氧化典型挥发性有机化合物甲苯与氯苯的实验,探讨了TiO2-5A分子筛复合载体负载铜、锰、铈催化剂活性组分的存在形式及其与催化氧化活性的关联,研究采用SEM、EDS、BET、XRD、XPS以及FTIR等方法对催化剂进行了表征.研究表明,双组分中甲苯的完全转化温度(T95)比单组分的要高出31℃,而单组分氯苯在双组分氯苯的T90温度下可被完全转化,催化剂上目标物的竞争吸附降低了其催化氧化效果.XRD和XPS分析表明,催化剂中的活性物质以多价态氧化物CuO/Cu2O、MnO2/MnO以及Cu1.5Mn1.5O4和CuMn2O4尖晶石形式均匀分散于载体表面,Cu2+/Cu+、Mn4+/Mn2+的相互转化促进了电子转移增强了甲苯氯苯被氧化的性能,以及有更高催化活性的CuMn2O4尖晶石的形成有利于催化剂活性的提高.CeO2/Ce2O3相互转化加强了催化剂表面储氧、输氧的能力并加快了氧化反应速率.FTIR与粉红色尾气吸收液检测结果推测:甲苯首先氧化成苯甲醛、苯甲酸类物质,而氯苯氧化成苯酚,210℃下可最终氧化成二氧化碳和水.  相似文献   

8.
以纳米CuO为催化荆,采用微波辅助催化湿式过氧化氢氧化方法对高浓度苯酚废水(1 000 mg/L)进行降解处理,并与传统的催化湿式过氧化氢氧化技术进行比较,研究了微波强化作用对该技术的处理工艺条件、降解效率及机制的影响.结果表明,在微波的辅助作用下,当温度仅为60℃、压力为0.3 MPa时,催化湿式氧化反应15.0 min,苯酚废水的TOC去除率即达到90.8%.这表明微波促使催化湿式氧化反应可以在温和的条件下实现,而且效率高、速率快.进一步的降解机制研究发现,在微波的作用下,苯酚于2.0min内完全氧化转化,主要发生直接开环反应,生成短链羧酸,所经历氧化过程更为简单.  相似文献   

9.
为了探索一种高效、快速处理典型挥发性有机物的方法,对微波协同作用下霍加拉特剂催化氧化苯的性能进行了研究,主要考查了微波作用模式、微波功率、苯初始浓度、气体流量、催化剂用量和气体湿度对处理苯效果的影响,并对影响规律进行总结。实验结果表明,微波功率70 W,苯初始浓度1 917 mg/m3,气体流量1.0 L/min,催化剂床层高度3.86 cm时,苯转化率可达99.2%。微波辐照条件下霍加拉特剂能够有效实现苯的催化氧化,并且比传统加热具有更高的能量利用率。  相似文献   

10.
采取固定床连续式水处理方式,实验研究了在固体催化剂作用下微量臭氧催化氧化深度处理地下煤气化废水的效果.结果表明,当处理COD为300 mg,/L左右的该类型废水时,加入微量臭氧,水处理装置COD去除率提高了45%,平均1 mg的臭氧处理了2.4 mg有机物;当废水COD为200 mg/L左右,进水速度为1 L/h时,最佳臭氧投加量为每升废水20 mg左右的臭氧,此时气水比为15:1左右;同时实验发现,不同COD的废水色度均可以被有效去除.通过与其他类似的实验研究比较发现,微量臭氧催化氧化技术具有成本优势.  相似文献   

11.
以陶粒为载体,以TiO2,Fe2O3,MnO2为活性组分,考察不同活性组分的陶粒作为催化剂对化工园区生化尾水臭氧氧化能力的强化情况。结果表明,3种负载型催化剂均能有效强化臭氧氧化过程,显著降低生化尾水Abs、UV254以及COD等指标,其中以Fe2O3/陶粒的催化强化效果最为显著,能显著降低生化尾水在200~250 nm处的吸波强度,尾水UV254从0.580降至0.320,COD从240 mg/L降至194 mg/L。  相似文献   

12.
微波诱导鳞片石墨-H2O2催化氧化处理甲基紫废水   总被引:2,自引:0,他引:2  
研究微波诱导鳞片石墨-H2O2催化氧化处理甲基紫废水工艺,探讨各种因素的协同作用及对废水脱色效果的影响,并采用SEM、EDX、XRD和FTIR对新鲜及使用6次后的鳞片石墨进行表征。结果表明,微波诱导鳞片石墨-H2O2能高效快速降解废水中的甲基紫;在50mL初始pH为3,质量浓度为10mg/L的甲基紫废水中,H2O2用量1mL/L,鳞片石墨3g/L,微波输出功率259W,微波辐射时间9min的最佳处理工艺条件下,甲基紫脱色率达到了98.80%;微波、鳞片石墨、H2O2体系对甲基紫废水降解效果明显,产生协同效应。紫外-可见光谱分析表明,废水中甲基紫结构被破坏,但仍含有少量苯环等小分子。动力学研究表明,脱色反应符合一级反应动力学规律,反应速率常数^为0.42613min^-1,反应半衰期t。为1.626min。  相似文献   

13.
通过浸渍法制备了CuO/AC作为微波催化剂,并采用XRD、FT-IR进行表征分析。考察了CuO担载量,微波催化剂用量、微波功率、辐照时间、pH值等因素对苯酚废水去除率的影响。结果表明,在微波功率600 W条件下,使用3 g CuO担载量0.5%的CuO/AC催化剂处理100 mL初始浓度为500 mg/L的苯酚模拟废水,反应18 min,去除率可达99.42%,相应TOC去除率为90.4%。通过添加不同氧化基团清除剂的实验发现,反应过程中产生了羟基自由基(·OH)。而添加大量H2O2或持续鼓入O2并不能有效提高苯酚的去除率。同时,还对微波催化氧化降解苯酚废水进行了动力学分析,发现其符合一级动力学方程模型,并得出表观速度常数随微波功率密度增加而增大的关系。  相似文献   

14.
以三级生化处理后的炼油污水为研究对象,考察了催化氧化过程的氧化作用和混凝作用,结果表明,催化氧化法去除有机物主要通过将大分子有机物氧化分解为小分子有机物,从而提高污水的可生化性;催化氧化对有机物氧化具有选择性,对苯甲酸和苯胺等芳香类化合物去除效果好,去除率分别达到92.2%和84.8%;对草酸和乙酸等小分子有机酸去除效...  相似文献   

15.
为了考察焦化废水臭氧催化氧化深度处理过程中污染物的降解特征,对处理过程中的废水进行了COD、TOC、BOD、紫外可见光谱、高效液相色谱、气相色谱-质谱联用(GC-MS)和凝胶色谱等多种分析。结果表明:经臭氧催化氧化处理后,废水的COD、TOC和UV254均降低,降低速度大小为UV254 >COD >TOC;臭氧催化氧化可提高废水的可生化性,但氧化时间进一步延长,可生化性反而降低;液相色谱表明非极性物质优先得到去除;凝胶色谱表明分子量较小的物质优先去除;GC-MS结果表明焦化废水混凝出水中主要成分为苯酚类、杂环化合物、多环芳烃及其衍生物,臭氧催化氧化处理后这些化合物都得到有效降解。  相似文献   

16.
介绍了组合生化一催化氧化工艺在橡胶促进剂废水处理中的运行和调试情况。应用生亿处理和催化氧化相结合的工艺,治理橡胶促进剂废水,处理效果好,对COD、NH3-N的去除效果显著。  相似文献   

17.
垃圾焚烧发电厂渗滤液生化出水是一种高盐,且含腐殖酸类和水溶性小分子有机物的复杂废水。本研究提出了采用Ca(OH)2预处理,并催化臭氧氧化处理的新工艺路线,对工艺参数和催化过程机理进行了分析。结果表明,Ca(OH)2可以有效地预处理去除生化出水中的腐殖酸类大分子有机物,当其用量为12 g/L时,可使COD的去除率达到70%~75%。Ca(OH)2可强化催化臭氧氧化处理预处理废水中剩余的难降解小分子有机物,其机理可能是及时去除了反应体系中生成的碳酸根离子,其适宜用量为2 g/L废水。当搅拌转速小于600 r/min,进口气相中臭氧浓度小于66.24 mg/L时,增大反应体系搅拌强度和进口臭氧浓度可以强化废水COD的去除速率。该工艺在深度处理垃圾渗滤液生化出水中难降解有机物领域具有较大的应用前景。  相似文献   

18.
采用微波催化氧化处理正丁酸模拟废水,以COD去除率为评价指标,对固相-焙烧法制备的3个系列共45种催化剂进行筛选,通过正交实验对催化剂制备工艺进行优化,并对优选出的催化剂进行XRD和SEM表征。结果表明,NiO+Co2O3+CeO2(Ni∶Co=1∶1、NiO+Co2O3/CeO2=1∶4)为筛选出的最优催化剂;Ni-Co-Ce-O催化剂最优制备条件为Ni:Co摩尔比1∶2、(NiO+Co2O3)/CeO2质量比5%、研磨时间40 min、焙烧温度450℃、焙烧时间3 h,此条件下制备的催化剂催化效能最高,COD去除率达67%。  相似文献   

19.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

20.
研究微波诱导鳞片石墨-H2O 2催化氧化处理甲基紫废水工艺,探讨各种因素的协同作用及对废水脱色效果的影响,并采用SEM、EDX、XRD和FTIR对新鲜及使用6次后的鳞片石墨进行表征。结果表明,微波诱导鳞片石墨-H2O2能高效快速降解废水中的甲基紫;在50 mL初始pH为3,质量浓度为10 mg/L的甲基紫废水中, H2O2用量1 mL/L,鳞片石墨 3 g/L,微波输出功率259 W,微波辐射时间9 min的最佳处理工艺条件下,甲基紫脱色率达到了98.80%;微波、鳞片石墨、H2O2体系对甲基紫废水降解效果明显,产生协同效应。紫外-可见光谱分析表明,废水中甲基紫结构被破坏,但仍含有少量苯环等小分子。动力学研究表明,脱色反应符合一级反应动力学规律,反应速率常数k为0.42613 min-1,反应半衰期t1/2为1.626 min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号