首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为探讨石家庄秋季PM_(2.5)中低分子量有机酸组成特征与来源,于2017年9—10月对石家庄PM_(2.5)进行采样并测定了3种低分子量有机酸(甲酸、乙酸、草酸)浓度,还测定了水溶性无机离子(Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)辅助讨论有机酸来源。结果发现,石家庄秋季PM_(2.5)中草酸浓度高于甲酸和乙酸,而甲酸和乙酸浓度接近,甲酸、乙酸和草酸的质量浓度分别为20~240、50~280、60~1 130ng/m~3。石家庄秋季PM_(2.5)中低分子量有机酸受自然源和人为源的混合影响,以人为源占主导,其中甲酸和乙酸的同源性较高。甲酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、土壤和扬尘。乙酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、生活污水、土壤和扬尘。草酸的可能来源为交通汽车尾气排放、大气氧化反应、生物质燃烧、土壤和扬尘、生活污水。  相似文献   

2.
通过采集鞍山市城市PM_(2.5)样品,使用气相色谱—质谱联用仪分析PM_(2.5)样品中的多环芳烃(PAHs)含量,并进行PAHs组成特征及来源研究。结果表明,鞍山市6个采样点13种PAHs质量浓度总和为10.54~14.26ng/m3,平均为12.08ng/m3,苯并[a]芘日均浓度均未超过《环境空气质量标准》(GB 3095—2012)日均浓度限值;低分子量PAHs比例较低,5、6环PAHs呈相对优势分布,表明交通污染源对鞍山市PM_(2.5)中的PAHs贡献较大;利用比值法和主成分分析(PCA)法对PAHs来源进行解析,两种方法均表明,PAHs污染主要来自柴油、煤炭燃烧源和焦炉源,污染类型为煤烟和交通复合型。  相似文献   

3.
南昌市夏季PM_(2.5)中多环芳烃来源解析   总被引:1,自引:0,他引:1  
在南昌市设立了5个不同功能区采样点,分别为居民区、工业区、商业区、交通干线区以及郊区,于2008年夏季进行PM2.5采样,对样品进行测定和分析后,通过因子分析法判断PM2.5中多环芳烃(PAHs)的主要污染源,再利用多元线性回归法确定各主要污染源对PAHs的贡献率。结果表明,南昌市夏季PM2.5中PAHs的主要污染源为车辆排放源、高温加热源、燃煤污染源,它们对PAHs的贡献率分别为37.9%、28.2%和22.0%;要控制南昌市夏季PM2.5中的PAHs,主要是要对机动车尾气排放量进行控制,并加强机动车尾气治理工作。  相似文献   

4.
采用离子色谱法测定武汉市秋、冬季大气PM2.5中水溶性离子浓度,对其化学组成、质量浓度变化特征及源解析等方面进行了研究。结果表明,NO-3、SO2-4、NH+4为武汉市秋、冬季大气PM2.5中主要的水溶性离子,相关性分析表明,燃烧源是秋、冬季大气PM2.5中水溶性离子的共同来源。成分分析表明,工业区的水溶性离子主要来源于燃烧源,交通区的水溶性离子主要来源于二次污染源,其中包括垃圾焚烧源,植物园的水溶性离子主要来源于二次污染源。  相似文献   

5.
于2013年9月(非采暖季)、2014年2-3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM2.5样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM2.5的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM2.5的主要组成,分别占到ρ(PM2.5)的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM2.5的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

6.
为明确浙江省龙游县环境中PM2.5的化学组分特征及来源,于2018年在龙游县3个代表性点位采集4个季节的环境PM2.5样品,分析了PM2.5中的无机元素、水溶性无机离子和碳组分含量,并采用化学质量平衡模型(CMB)计算了7类污染源的贡献率.结果表明:3个点位PM2.5平均质量浓度春季为39.63μg/m3、夏季为29....  相似文献   

7.
南昌市秋季大气PM_(2.5)浓度及化学组分特征分析   总被引:1,自引:0,他引:1  
2013年秋季在南昌市6个空气自动站点连续采集了10d的大气PM2.5样品,对采集的样品进行无机元素、有机碳、元素碳和水溶性离子等组分的分析。结果表明,监测期间南昌市PM2.5均值都低于《环境空气质量标准》(GB 3095—2012)二级标准限值(75μg/m3)。南昌市大气PM2.5主要组成元素为S、Si、Ca、Al、Fe、Na和Mg,说明城市扬尘、建筑水泥尘和燃煤尘等源类贡献率高;SO2-4、NO-3和NH+4是最主要的水溶性离子,NO-3与SO2-4浓度比为0.63,说明相比于固定源,以机动车排放为代表的流动源对南昌市大气PM2.5浓度影响更大;有机碳/元素碳(质量比)为2.9,说明南昌市有显著的二次有机碳生成。  相似文献   

8.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

9.
10.
PM_(2.5)污染已成为当前经济发展中亟待解决的难题。从年、季、日变化及周末效应4个时间尺度和空间自相关分析研究了京津冀地区PM_(2.5)的时空效应,并构建空间回归模型量化分析相关社会经济因素对PM_(2.5)的影响。结果显示:(1)2013—2016年京津冀地区PM_(2.5)污染整体呈下降趋势,但污染程度依然很高,基本都没有达到《环境空气质量标准》(GB 3095—2012)二级标准(35μg/m~3)。四季的达标天数夏季春季秋季冬季。中南部的石家庄、保定、衡水、邢台、邯郸为PM_(2.5)浓度高值区,日变化曲线为单峰型,受工业企业生产排放的影响较大;北部的张家口、承德、秦皇岛为PM_(2.5)浓度低值区,中东部的天津、北京、沧州、唐山、廊坊为PM_(2.5)浓度中值区,日变化曲线均为双峰型,受机动车尾气排放的影响较大。石家庄、北京的周末效应表现为白天PM_(2.5)浓度工作日高于周末,晚上周末高于工作日。(2)京津冀地区PM_(2.5)存在显著的空间正相关性,2013—2016年石家庄、衡水、邢台、邯郸始终表现出高-高集聚特征,张家口、承德、秦皇岛始终保持低-低集聚特征。汽车尾气排放是京津冀地区PM_(2.5)污染的重要影响因素,而能源消耗的影响不显著。  相似文献   

11.
利用轨迹聚类分析、轨迹扇区分析(TSA)和潜在源贡献函数(PSCF)分析3种方法研究了2013年6月至2016年5月舟山市的PM_(2.5)输送路径和潜在来源。聚类分析显示,舟山市PM_(2.5)夏季主要受来自偏南方向的气团影响,冬季主要受来自偏北和西北方向的气团影响,与季风方向一致,以短距离传输为主。TSA结果与轨迹聚类分析类似,综合考虑后向轨迹停留时间和PM_(2.5)平均浓度,研究期间西北和偏北方向的扇区对舟山市PM_(2.5)的贡献率最大,达47.3%。PSCF分析显示,舟山市PM_(2.5)的潜在来源贡献区域主要集中于江苏省、山东省南部、浙江省北部和安徽省东部。  相似文献   

12.
2011年8月—2012年7月间于东莞市生活区(NC)点和工业区(ZT)点采集大气PM10/PM2.5/PM1样品,并检测分析了颗粒物上的多环芳烃(PAHs)和正构烷烃。粒径分布结果显示,PAHs和正构烷烃均主要富集在PM1上,而正构烷烃富集程度更高。PAHs环数分析结果显示,PM1中主导PAHs为6环,PM1~2.5和PM2.5~10中则为4环。利用特定比值法分析PAHs来源,结果表明,生活区NC点大气颗粒物中PAHs主要来自汽油车尾气、天然气燃烧、燃煤源和烹饪源,而工业区ZT点则主要来自柴油车尾气、燃煤和木材燃烧。通过主峰碳数、碳优势指数、植物蜡贡献率等方法分析正构烷烃来源,结果表明,化石燃料燃烧是东莞市大气颗粒物中正构烷烃的主要贡献源,其次是高等植物蜡排放,贡献率约为10.9%~28.9%。化石燃料燃烧源贡献率对PM1的贡献率明显较PM1~2.5和PM2.5~10高。  相似文献   

13.
使用中流量采样器采集温州城区2015年4个季节的大气PM_(2.5)样品,利用气相色谱(GC)—质谱(MS)联用仪对PM_(2.5)样品中16种优先控制的多环芳烃(PAHs)进行分析,研究PM_(2.5)中PAHs的污染特征及其可能来源。结果显示,PM_(2.5)中总PAHs质量浓度为5.12~81.59ng/m~3,且表现为冬季秋季春季夏季,季节性变化特征明显。比值法和主成分分析显示,温州城区大气PM_(2.5)中PAHs的主要污染源是燃煤、机动车尾气以及生物质燃烧。总PAHs日均毒性当量浓度为0.44~11.28ng TEFs/m~3,平均值为3.44ng TEFs/m~3。成人和儿童的终生超额致癌风险(ILCR)年均值分别为7.11×10~(-7)、4.98×10~(-7),表明温州城区PM_(2.5)中PAHs对人体健康影响水平较低,在可接受范围内。  相似文献   

14.
利用2013年邯郸市4个大气环境监测站连续1年的在线监测数据,并结合离线采样成分数据,对比分析了不同季节大气中PM_(2.5)及其主要成分的浓度水平和污染特征。结果表明,PM_(2.5)和PM10四季均存在不同程度的超标现象;污染物在4个站点之间的空间差异不太显著,邯郸市的污染为区域性污染。PM_(2.5)中水溶性无机离子和碳组分的季节变化均较为明显。SO_4~(2-)、NO_3~-和NH_4~+三者浓度之和占PM_(2.5)浓度的39.8%,占PM_(2.5)中总水溶性无机离子浓度的86.2%;四季均存在较强的光化学反应,但硫氧化率(SOR)和氮氧化率(NOR)呈现出不同的季节变化规律,与SO2-4和NO_3~-的来源和去除机制明显不同有关。秋、冬季有机碳(OC)和元素碳(EC)污染较为严重,总碳气溶胶(TCA)浓度分别占PM_(2.5)质量浓度的24.0%和32.9%;研究显示高浓度的OC较多来源于二次有机碳(SOC),高浓度碳易发生二次污染。进一步对PM_(2.5)中各组分进行来源分析得出燃煤、汽油车尾气、生物质燃烧、二次气溶胶和扬尘源对邯郸市PM_(2.5)贡献显著。  相似文献   

15.
在武汉市工业区和交通区展开了PM_(2.5)样品采集,研究了PM_(2.5)中二元羧酸的化学组成、污染水平及来源。二元羧酸在工业区为103.1~2 219.2ng/m~3,年平均值为958.4ng/m~3;在交通区为66.9~2 176.8ng/m~3,年平均值为749.7ng/m~3。丙二酸/丁二酸(C_3/C_4,质量比,下同)表明,武汉市二元羧酸主要来自机动车尾气排放;己二酸/壬二酸(C_6/C_9)表明,二元羧酸的人为源贡献大于自然源。正定矩阵因子分解(PMF)模型解析结果显示,工业区中二次源占13.7%,建筑扬尘占23.1%,机动车尾气排放占37.0%,生物质燃烧占26.2%;交通区中二次源占8.9%,建筑扬尘占24.9%,机动车尾气排放占51.8%,生物质燃烧占14.4%。潜在源区贡献因子(PSCF)分析得出,武汉市夏季二元羧酸主要受到南部季风的影响,冬季主要受到西部冷空气的影响。  相似文献   

16.
于2014年1—4月在天津城区采集PM2.5样品,采用热光反射法测定样品中有机碳(OC)、元素碳(EC)及8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3、裂解碳(OP))的含量。结果表明,天津城区空气PM2.5中OC、EC质量浓度分别为(18.7±9.9)、(3.9±2.6)μg/m3,两者之和占PM2.5质量浓度的18.0%。采样期间OC与EC变化趋势一致,均呈现春节期间、普通采暖季浓度较高,非采暖季浓度较低的特点。对8个碳组分进行相关性分析,发现OC1~OC4及EC1~EC3分别来自相似的来源或受大气中类似的二次过程影响,主成分分析结果表明,燃煤、生物质燃烧和机动车排放对天津城区PM2.5中碳组分贡献显著。  相似文献   

17.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

18.
宁波城市扬尘化学组成特征及其来源解析   总被引:1,自引:0,他引:1  
为有效制定城市扬尘的防治措施,系统研究宁波城市扬尘污染的化学组成特征和来源,选取宁波为研究区域,采集了城市扬尘、土壤风沙尘、煤烟尘和机动车尾气尘4种源类样品,进行了元素、离子和碳3大类分析,并与其他城市进行了比较。结果表明:(1)宁波城市扬尘的主量成分包括Ca、Si、Fe、Al、K、总碳(TC)、有机碳(OC)和SO2-4,质量分数总和为44.14%,其中Ca、Si、Fe、Al、K等地壳元素含量较高。宁波城市扬尘化学组成与其他典型城市相差较大,其中Si、Al和Mg含量明显低于其他城市,而Na、K、Ni等元素含量总体较高。(2)分歧系数计算结果为0.471,说明城市扬尘与土壤风沙尘的化学组成相似度不高,受人为来源类的影响较大。(3)宁波的城市扬尘中Zn富集因子最大,达23.10,其次为Ca、Cu、Pb、Ni、As,且这些重金属元素的富集因子均在5之上,表明Zn、Ca、Cu、Pb、Ni、As显著富集,受人类活动影响较大。(4)土壤风沙尘对城市扬尘的贡献最大(分担率达34.88%),其次为建筑水泥尘(分担率达25.01%)、煤烟尘(分担率达20.19%)。说明城市扬尘中大部分化学组分来自土壤风沙尘、建筑水泥尘和煤烟尘。  相似文献   

19.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

20.
根据水泥工业生产技术、生产过程以及PM_(2.5)排放控制水平,采用排放因子法核算了2013年中国大陆不同省份水泥工业PM_(2.5)排放量。估算结果表明:2013年中国大陆地区水泥工业PM_(2.5)排放总量为476.6万t,其中京津冀及周边7省份(包括北京、天津、河北、山东、山西、内蒙古、河南)的PM_(2.5)排放量合计占排放总量的21.3%;熟料水泥生产企业PM_(2.5)排放量占排放总量的73.1%,水泥磨站的PM_(2.5)排放量占26.9%;有组织PM_(2.5)排放量为307.8万t,占排放总量的64.6%,无组织PM_(2.5)排放量为168.8万t,占排放总量的35.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号