首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
湍球塔和喷淋塔的海水脱硫冷态实验对比   总被引:1,自引:0,他引:1  
通过湍球塔和喷淋塔的海水脱硫冷态实验对比,研究海水脱硫过程中烟气和海水参数对湍球塔和喷淋塔脱硫的不同影响。实验结果表明,SO2分压力增大,脱硫效率和尾水pH值减小;海水碱度、pH值和液气比增大,脱硫效率和尾水pH值也随之增大;湍球塔的脱硫效率和尾水pH值与液气比改变方式无关,实验用湍球塔的合适液气比值为2.3 L/m3;湍球塔脱硫实验中,塔内气速为1.58 m/s,SO2分压力为20 Pa,水温为10.2℃,液气比为1.1~2.8 L/m3时,尾水pH值在2.4~2.8之间;增大液气比时,喷淋塔改变海水流量的脱硫效果要比改变气体流量的脱硫效果明显;塔内气速1 m/s以上时,一级喷淋塔的脱硫效率要比湍球塔小很多,有时只有湍球塔的1/2左右。  相似文献   

2.
研究对象为2种新型湿法除尘除有害气体的斜板塔:矩形斜板塔和伞罩形斜板塔.为了观察塔内流场分布规律,运用CFD(计算流体力学)软件,气相采用标准K-ε湍流模型描述,液相采用颗粒轨道模型描述,对2种新型塔内气液两相流动进行了数值模拟.预测了无喷淋和有喷淋两种情况下的气相湍流流场,不同空塔气速不同液气比的塔内压力损失.结果表明:采用中心出口的圆柱型塔可以有效地避免气体"死区"的产生;新型斜板塔能有效地增大气液接触面积,延长气体的塔内停留时间;加入喷淋液体以后,气相流场明显均匀化.该模拟也为塔体的进一步优化设计提供了依据.  相似文献   

3.
湿式烟气脱硫喷淋塔内部流场数值模拟研究   总被引:5,自引:0,他引:5  
以300MW机组湿法烟气脱硫喷淋塔为研究对象,利用计算流体力学通用软件对其内部两相流场进行模拟。气相湍流由标准k 模型描述,喷淋液滴由拉格朗日颗粒轨道模型描述。预测了无喷淋和有喷淋2种条件下的气相湍流流场分布、沿塔高方向不同截面上的气速分布以及喷淋液滴的轨迹。模拟结果表明,引入喷淋液后,出口截面气速分布明显均匀化,其最大值由无喷淋时的12m/s降至6m/s。该最大值出现在靠近塔壁处,是由塔壁附近喷淋密度较低造成的,可通过改进周边喷嘴的布置方式及喷嘴型式进行优化。  相似文献   

4.
湿式烟气脱硫喷淋塔内部流场数值模拟研究   总被引:13,自引:0,他引:13  
以300MW机组湿法烟气脱硫喷淋塔为研究对象,利用计算流体力学通用软件对其内部两相流场进行模拟。气相湍流由标准κ-ε模型描述,喷淋液滴由拉格朗日颗粒轨道模型描述。预测了无喷淋和有喷淋2种条件下的气相湍流流场分布、沿塔高方向不同截面上的气速分布以及喷淋液滴的轨迹。模拟结果表明,引入喷淋液后,出口截面气速分布明显均匀化,其最大值由无喷淋时的12m/s降至6m/s。该最大值出现在靠近塔壁处,是由塔壁附近喷淋密度较低造成的,可通过改进周边喷嘴的布置方式及喷嘴型式进行优化。  相似文献   

5.
以竹炭为填料,采用高效生物滴滤塔(BTF)中试装置处理污水提升泵站产生的以H2S为主的废气,考察了喷淋时间和喷淋频率对塔内轴向H2S去除率、滤出液中SO42-浓度和pH、塔内压降的影响。结果表明:当生物滴滤塔系统的空塔停留时间为6.43 s,喷淋时间和喷淋频率分别为1 min·次-1和1次·(60 min)-1,BTF对H2S去除效果最好,去除率达99.0%以上,达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级厂界排放标准;BTF滤出液中的pH值稳定在2.0~3.0之间,塔内的微生物为嗜酸性硫氧化菌;BTF对H2S的降解符合Michaelis-Menten动力学模型,在适宜喷淋条件下,BTF内的表观半饱和常数(Ks)和最大表观去除速率(Vm)分别为86.8 mg·m-3和22.3 g·(m3·h)-1,系统具有较高的抗负荷冲击能力。  相似文献   

6.
卧式喷淋塔是北京科技大学环境中心研发的新型湿法烟气脱硫工艺,在一定程度上克服了立式喷淋塔的缺点,做到了高效率、低压损、低成本、易检修。但在工程实例中仍存在一些问题。为了研究不同喷淋布置方式对卧式喷淋塔的影响,构建了卧式喷淋塔的稳态三维的多相CFD模型三维,并使用Fluent软件进行模拟。连续相湍流模型采用了标准k-ε双方程模型,液滴离散相模型采用了Eulerian-Lagrangian模型。结果表明,喷淋布置方式的喷雾锥角为110°,安装高度控制在距顶面0.8 m,喷射方向与竖直方向成45°时,能显著减小压力损失、延长烟气停留时间、增强气液接触效率,最终提高脱硫效率,降低功率能耗。研究结果可为实验设计、工程应用提供指导。  相似文献   

7.
利用FLUENT软件和SIMPLE算法对新型旋流脱硫塔的气液两相流场进行了数值模拟。计算中气相采用了RSM湍流模型,颗粒相采用了Lagrange坐标系下的随机轨道模型。分析结果表明,气相流场具有强旋流特性;喷射液滴的直径、喷淋量和烟气流速影响其在塔内的分布:喷射液滴粒径越大、喷射量越小、烟气流速越大,入口段降温越少;塔体上方截面平均浓度随液滴粒径的增加而降低,随液气比的增加而增加,随烟气流速的增加会先增加至最高值然后降低。喷淋液滴在其他运行参数不变时,平均粒径范围为0.5~1 mm,会对进口烟气起到较好的净化与降温的作用,并使塔体上方喷淋液滴在截面z=4.15 m处浓度分布均匀且覆盖率高;在保证液滴粒径较小时,通过降低烟气流速或增加喷淋量可提高液滴喷淋覆盖率,使得烟气与喷淋充分接触。计算得到的气相流场分布与实测值吻合较好,证明了数学模型的合理性,为进一步优化分离器结构提供了可靠依据。  相似文献   

8.
以H2S气体为研究对象,考察改进型生物滴滤塔的脱臭效能、最适工艺运行条件及其影响因素.试验结果表明,循环液喷淋量为10 L/s,气体流量为400 L/s的情况下,最高H2S负荷率可以达到68.2 g/m3·h;最适气体停留时间68.4 s.当入口H2S浓度分别为0~700 mg/m3、700~1000 mg/m3和大于1000 mg/m3时,对应的最适循环液喷淋量为10 L/s、15 L/s和60 L/s.H2S去除率100%的情况下,最大允许进气浓度可达1870 mg/m3,即最大H2S负荷率为98.4 g/m3·h.该研究表明,改进型生物滴滤塔具有较高的H2S去除能力,最适工艺运行条件的确定对污水厂臭气和化工行业产生的H2S处理具有一定的指导意义.  相似文献   

9.
从液滴受力分析入手,分析了喷淋塔内液滴的运动特性,采用类比定律推导了气相传质系数计算式,建立了喷淋塔脱氨传质模型,并进行了实验验证,分别在不同的喷淋密度和空塔气速的条件下,对传质系数、比表面积及容积吸收率沿塔高的分布进行了模拟。结果表明,沿着液滴的下落方向,比表面积逐渐减小,传质系数缓慢增大,二者在塔顶附近变化显著;传质速率受比表面积和传质推动力的影响较大,增大喷淋密度可显著增加比表面积,提高空塔气速可增大平均传质系数;喷淋塔下半段比表面积小,增大比表面积是强化传质的有效手段。  相似文献   

10.
对水在中试规模下吸收低浓度的氮氧化物废气进行了研究。分别研究了喷淋密度、温度、压力、气速以及氮氧化物浓度对吸收效果的影响,结果表明,综合考虑各种因素,喷淋密度在20 m3/(m2·h),水温在15℃以下,气速小于0.28 m/s,废气浓度在400 mg/m3左右时,氮氧化物的平均脱除率可以达到50%左右;同时,随着压力的增大,吸收效率也增加。  相似文献   

11.
喷流塔脱硫除尘技术研究   总被引:5,自引:1,他引:5  
基于强化喷淋装置传质过程,开发了一种结构简单、压降小、效率高、生产能力大的脱硫除尘装置——喷流塔。实验表明,液气比L/G=15L/m3时,除尘效率≥994%,流化层压降≤300Pa;采用CaCa双碱法脱硫工艺,pH=7~8、L/G=10~12L/m3时,脱硫效率≥92%,流化层压降≤450Pa。在脱硫操作条件下可同时脱除996%以上的烟尘,适于脱硫除尘一体化操作。  相似文献   

12.
以600MW机组喷淋塔为研究对象,利用Fluent软件,对装有一定开孔率气流分布板的脱硫喷淋塔进行了空塔和喷淋状态下热态流场数值模拟。计算中选用k—ε模型作为计算模型,并结合拉格朗日颗粒轨道模型,用SIMPLE算法计算。结果表明气流分布板对塔内流场、温度场和压力场都有一定的影响;引入喷淋液后,由于喷淋液滴对塔内流场强烈的整流作用,内部速度明显趋于均匀化。  相似文献   

13.
樊轩  李小峰  颜欢  王瑞  褚雅志 《环境工程学报》2016,10(11):6608-6612
为加快可再生胺法脱硫工艺的工业化进程,开发了一套撬装式脱硫再生中试装置,通过SO2连续吸收解吸实验验证装置性能。分别考察吸收剂质量分数、pH、液气比(L/G)、解吸温度、SO2进口含量对吸收和解吸效率的影响,结果表明:随吸收剂质量分数、pH、液气比的增大吸收率升高,而解吸率下降;解吸温度升高,吸收率变化不大,解吸率增速较快;SO2进口浓度增大,吸收率和解吸率迅速降低。确定适宜工艺条件为:吸收剂质量分数30%,pH=6~8,吸收温度30℃,解吸温度(90±5)℃,液气比L/G=5.0 L·m-3。通过微分法导出体积总传质系数KGa的计算公式,并与相关工艺参数进行关联拟合,回归出填料吸收塔KGa经验模型:KGa=0.081(L/G)0.232 0(8.91 w0.107 3pH0.248e-0.32yA-1)。  相似文献   

14.
基于乙二胺四乙酸亚铁螯合剂络合吸收的NO和NO_2协同净化工艺,一级净化采用铁屑填料床,利用螯合物吸收、铁屑还原净化NO,二级吸收采用鲍尔环清水喷淋塔,考察协同净化效果。结果表明:当NO进口质量浓度约为200mg/m~3、NO_2进口质量浓度约为70mg/m~3、螯合剂为0.02mol/L、液气比为3L/m~3、空塔气速为0.078m/s的条件下,一级出口NO降至75mg/m~3左右;在一级吸收塔螯合剂为0.02mol/L、液气比为3L/m~3和二级吸收塔氧化度(NO_2占NO_x的体积分数)为50%、液气比为4L/m~3的条件下,二级出口NO、NO_2分别可稳定在20、8mg/m~3左右。  相似文献   

15.
锅炉烟气中的NOx是大气污染的重要原因之一。针对燃气锅炉NOx超低排放的要求、以及烟气中大量余热被浪费的现状,提出了烟气脱硝与余热回收一体化的新方法,搭建了一体化实验台,在逆流式烟气喷淋塔中,进行了采用臭氧氧化烟气脱硝、并同时回收烟气余热的实验研究。研究了O3/NO摩尔比、液气比、碱液吸收对脱硝效果的影响,并对脱硝与余热回收的耦合关系进行了分析。在实验室实验的基础上,进一步进行了实际工程的中试研究。结果表明,烟气脱硝与余热回收一体化是可行的,实验台实验中,当烟气温度为83.0 ℃、喷淋水温度为46.4 ℃、液气比为14.8 m3·L-1、O3/NO摩尔比为1.6时,脱硝率为30%,同时回收烟气余热量18.5 kW。  相似文献   

16.
生物滴滤塔处理苯乙烯气流的工效和生物膜微群落的分析   总被引:2,自引:0,他引:2  
采用培养驯化污泥菌种、类球形陶粒和循环液等构建生物滴滤塔.研究评价气体苯乙烯浓度、气体流量、循环液喷淋量对生物滴滤塔工效的影响,并对生物膜微群落中的微种群作了定性定量检测.当进口气体苯乙烯小于1 000 mg/m3、气体流量为200 L/h、循环液流量为10 L/h时,苯乙烯净化效率达90%以上,生化去除量为30 mg/(L·h);单位体积生物膜填料对苯乙烯的最大生化去除量为35 mg/(L·h).湿润生物膜微群落的优势菌种群包括恶臭假单胞菌、梭形芽孢杆菌、罗非氏不动杆菌等5种,恶臭假单胞菌等非芽孢杆菌的最大活菌数为5.5×107 CFU/g,并随生物滴滤塔运行时间延长有减少趋势.  相似文献   

17.
为了达到燃煤电厂超低排放的要求,运用CFD技术对装有3种不同孔隙率与不同湍流单元直径的湍流器的脱硫塔内热态流场进行数值模拟,分析速度、温度和压力分布随孔隙率和湍流单元直径的变化规律,揭示湍流器的作用机理。气、液两相分别选用RNG k-ε湍流模型和拉格朗日颗粒轨道模型,并结合SIMPLE算法进行数值模拟。模拟结果表明:安装湍流器可明显改善脱硫塔内烟气流场的均匀性,使横截面的速度标准方差减小到1.0以下,并有效延长浆液驻留时间,提高吸收区的气液接触概率及浆液利用率;在综合考虑流场分布、气液掺混程度与能量损失的情况下,安装孔隙率为50%、湍流单元直径为1.2 m的湍流器效果最佳。研究结果可为大型电厂脱硫塔中湍流器的优化及选用提供依据。  相似文献   

18.
选用欧拉-欧拉多相流模型和RNG k-ε湍流模型对文丘里除尘器流动特性进行数值模拟,首先对2个喷嘴时不同液体速度下的压力降和喉管液体分布情况进行模拟,并与实验值进行了比较,得到了较好的一致性;然后比较了2个喷嘴和4个喷嘴的情况下不同液体速度时文丘里除尘器的压力降和液体分布情况。模拟结果表明:欧拉-欧拉多相流模型可准确地模拟文丘里除尘器内部流场;喷嘴数量对文丘里除尘器内部的压力降和液体分布有较大影响,当相对射流深度为0.2,喉管气速为64 m·s-1,喷嘴数量由2增加为4时,压力降增加了17.17%,在喷嘴数目为4,喉管气速为74 m·s-1,液体速度为12.5 m·s-1时可使液体在文丘里除尘器内部得到较均匀的分布。  相似文献   

19.
基于中浓度H2S的生物治理研究较少的现状,利用生物膜法进行了以活性炭为填料净化中浓度H2S适宜条件的研究.考察了温度、营养液喷淋量、空塔气速、H2S初始浓度及pH与H2S净化效率的关系.结果表明,适宜条件为温度30 ℃、营养液喷淋量10 L/h、空塔气速0.16 m3/h、H2S初始质量浓度低于60 mg/m3和pH为2.0.在适宜条件下,生物膜填料塔对H2S的净化效率可达到90%以上.  相似文献   

20.
烟气脱硫喷淋塔内液滴停留时间   总被引:1,自引:0,他引:1  
对于烟气脱硫喷淋塔中的雾化浆液液滴在塔内的运动以及停留时间进行了分析计算。给出了液滴下落速度随时间的变化 ;计算了单个液滴及浆液总体的停留时间。结果表明 ,对于粒径为dp=1 3~ 3 0mm的单个液滴 ,停留时间为t=3 0~ 1 3s ;雾化液滴尺寸分布对总体停留时间影响显著 ;合适的雾化液滴尺寸应为dp=0 7~ 1 5mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号