首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用双室方形微生物燃料电池(MFC),以葡萄糖作为共基质,研究了共基质浓度对典型偶氮染料甲基橙在MFC阳极室中脱色效率及同步产电的影响。结果表明,在0~1.5 g/L浓度范围内,共基质浓度越大,甲基橙脱色率、COD去除率和最大输出电压越高。在共基质浓度为1.5 g/L,进水甲基橙为300 mg/L的条件下,8 h的脱色率高达95%,且在1 000Ω外电阻下,最大输出电压达到662 m V;在无共基质条件下,8 h内对300 mg/L甲基橙的脱色率仅为7.5%,最大输出电压仅达到140 m V。厌氧对照实验表明,甲基橙在MFC中可以实现加速脱色,反应8 h后甲基橙在MFC中的脱色率提高了57%。该研究为开发新型MFC降解偶氮染料废水技术提供了理论依据。  相似文献   

2.
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响。利用竹炭比表面积大、吸附能力强等特性,将其作为"三合一"膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力。实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22W/m3增大到1.42W/m3,同时内阻降低了80.85%(由235Ω降为45Ω);库仑效率由15.0%增大到25.6%。说明MFC阳极室填充竹炭可以显著促进MFC的产电性能。  相似文献   

3.
双室微生物燃料电池处理硝酸盐废水   总被引:3,自引:1,他引:2  
基于双室微生物燃料电池(microbial fuel cell,MFC),针对阴极分别接种活性污泥(A-MFC)和反硝化细菌(D-MFC),研究其产电情况和硝酸盐废水去除效果。结果表明,在产电的同时都可有效去除废水中的硝酸盐污染物。在外接电阻100Ω的情况下,2种MFC均具有良好的产电性能,A-MFC和D-MFC达到的最大输出电压分别为119.6 mV和117.2mV,最大功率密度分别为23.40 mW/m2和26.63 mW/m2;同时两者在阴极室的平均反硝化速率分别为1.86 mg/(L.d)和2.19 mg/(L.d),阳极室的平均COD去除率分别为81.9%和82.4%。另外,通过扫描电镜观察可知,A-MFC和D-MFC阴极碳布表面形貌存在差异,并且阳极与阴极碳布表面形貌差异显著。  相似文献   

4.
构建了以乙酸钠为阳极基质、Cu~(2+)为阴极电子受体的双室微生物燃料电池(MFC),考察了该MFC处理含铜废水的效果及Cu~(2+)浓度对MFC产电性能的影响。通过改变阴极液中CuSO_4的质量浓度(20~130mg/L),测试了MFC运行过程中的输出电压、输出功率密度、内阻、Cu去除率等指标。结果表明:Cu~(2+)可作为MFC的阴极电子受体;在外电路电阻为1 000Ω的条件下,Cu~(2+)质量浓度为130mg/L的MFC性能最佳,其稳定输出电压为0.33V、最大输出功率密度为114.42mW/m~2,内阻为231.62Ω,最高Cu去除率为84.59%;通过X射线衍射测试发现,阴极还原产物为Cu_2O。  相似文献   

5.
木质素磺酸盐在微生物燃料电池中的降解及产电性能研究   总被引:2,自引:0,他引:2  
以厌氧活性污泥为接种体构建铁氰化钾阴极微生物燃料电池(MFC),对木质素磺酸盐的降解及产电效果进行了研究。结果表明,经过6个周期逐渐添加木质素磺酸盐的驯化后,以木质素磺酸盐为单一底物的MFC成功运行,最大功率密度为120.3 mW/m2。经过94 h的运行,阳极液COD和木质素磺酸盐去除率分别达到39.8%和49.3%...  相似文献   

6.
利用混合菌种(厌氧污泥)和单一菌种(Geobacter sulfurreducens)以不同接种方式搭建单室土壤微生物燃料电池(MFC)反应器,考察不同MFC的产电性能及其对Cd污染土壤的修复效果。结果表明,将混合菌种集中接种于阳极碳毡表面的MFC1运行效果最佳,其在2d即可完成启动,输出电压稳定在0.225V左右,最大功率密度为35.00MW/m2,内阻为515.5Ω。土壤修复效果与MFC产电性能相关,MFC1产电性能最佳,因此土壤修复效果最好,稳定运行30d后阴极Cd富集率最高,达19.02%  相似文献   

7.
构建了以二沉池剩余污泥厌氧发酵上清液为阳极底物的微生物燃料电池(MFC),考察了电池的产电性能、污染物去除效率及阳极微生物种群特征。结果表明,厌氧发酵污泥MFC作为污泥资源化的一种新途径,具有可行性。在厌氧发酵的预处理条件下,MFC体系稳定运行期间输出电压最高可达0.65 V,最大功率密度达86.89 m W·m~(-2),库伦效率为(5.12±0.5)%;与此同时TCOD去除率为(50.6±3.5)%。污泥在厌氧发酵阶段产生大量挥发性脂肪酸(VFAs),它们作为产电微生物易于摄取的阳极底物,能够促进污泥中有机质的去除,进而提高污泥MFC的产电效果。由阳极微生物群落结构可推断:产电和非产电细菌具有协同作用,共同维持MFC的稳定运行。  相似文献   

8.
构建一种新型三室微生物脱盐电池(MDC),研究其脱盐产电并同步处理污染废水的效果。结果表明,阳极室为葡萄糖溶液,中间室盐溶液浓度5 g/L,阴极室为铁氰化钾溶液,闭合体系瞬时获得最高电压650 mV,同时脱盐效果良好,该MDC成功启动。其后,阴极室以重金属铬(200 mg/L)废水作为电子受体,中间室初始盐浓度为20 g/L、35 g/L,Cr(Ⅵ)平均还原率分别为1.06 mg/(L.h)和0.64 mg/(L.h),两者Cr(Ⅵ)的去除率均能达到80%以上,脱盐率分别为81.64%(20 g/L)和88.95%(35 g/L)。中间室盐浓度20 g/L时,获得最大输出电压466.6 mV,最大体积功率密度98.6 mW/m3,最佳内阻655.8Ω,库仑效率1.16%。表明该MDC系统具有良好的脱盐效果和处理废水效果。  相似文献   

9.
尹航  胡翔 《环境工程学报》2013,7(2):608-612
微生物燃料电池在处理废水的同时可以产生电能,有希望同时解决废水再利用和能量再产生的问题。采用单室无膜空气阴极微生物燃料电池,处理模拟生活污水,探讨MFC处理模拟废水的效果。研究了以碳布(MFC1)、碳布负载碳纳米管(MFC2)、碳纳米管(MFC3)和泡沫镍(MFC4)作为4种不同的阳极材料,对MFC系统的启动、内阻和产电特性进行比较。结果表明,4种不同阳极MFC在水力停留时间24 h的条件下,对COD有很好的去除作用,其中MFC2的COD去除效率最大,为91.4%。在不影响MFC系统处理废水效果的前提下,实验得到4种阳极MFC系统中MFC2具有最小的内阻,为173.7Ω;并且其功率密度也大于其他3种MFC,达到401.2 mW/m2。  相似文献   

10.
通过构建空气阴极型双室微生物燃料电池,研究了以500 mg/L苯胺作为唯一燃料以及苯胺和不同底物共基质时MFC对苯胺的降解特性及MFC的产电性能。结果表明,在外电阻1 000Ω,以500 mg/L苯胺为唯一燃料以及500 mg/L苯胺分别和500 mg/L乙酸钠,葡萄糖和可溶性淀粉作为共同基时的MFC运行周期分别为3、3.4、4.6和5 d;最大输出电压分别为273、450、428和380 m V;输出功率分别为142、225、201和160 m W/m2。苯胺去除率分别为68%、85.8%、71%和65%。内阻分别为931、524、564和751Ω,COD去除率分别为68%、85%、72%和65%。库伦效率分别为1.8%、7.9%、6.6%和4.5%。MFC可以使用苯胺作为唯一燃料,且当添加的基质不同时,MFC产电性能以及苯胺降解状况有所不同。利用MFC可以使苯胺高效快速降解的同时实现稳定的电压输出。  相似文献   

11.
双室微生物燃料电池同时去除废水中的苯酚和硝酸盐   总被引:2,自引:1,他引:1  
构建了一种双室微生物燃料电池,以苯酚为阳极燃料,同时去除阴极室的硝酸盐废水。结果表明,在闭合情况下,该微生物燃料电池阳极室的苯酚降解效率达到7.6 mg/(L·h),是开路情况下的2倍;反应开始后的5 d内,闭合系统阴极室硝酸盐降解效率达到4.43 mg/(L·d),是开路情况下的2倍多,表明了该MFC系统可以同时去除废水中2种难降解污染物,并且与传统的生物降解方式相比较,具有更快的降解速率。  相似文献   

12.
微生物燃料电池近年来被证实可以用来同步脱氮,然而微生物燃料电池中阴阳极室通常以不同成分的污水作为底物。为了实现废水脱氮,往往需要进行出水调配或停曝等复杂的操作。为解决上述问题,本研究构建了阴极硝化耦合阳极反硝化的四室微生物燃料电池(four chamber microbial fuel cell,FC-MFC),阳极室与阴极室之间用阳离子交换膜(cation exchange membrane,CEM)与阴离子交换膜(anion exchange membrane,AEM)进行交替分隔。在浓度差作用下离子进行定向迁移,最终实现阳极室有机物和氨氮的同步去除。探讨了阳极COD(即进水碳氮比)对FC-MFC产电及污染物去除效果的影响,并分析FC-MFC的氮去除途径。结果表明:随着阳极室COD的增加,各MFC模块的产电周期、峰值输出电压和最大功率密度随之增加,同时阳极室COD和TN的去除率也呈上升趋势,该系统对高碳氮比污水具有良好的抵抗负荷。当进水COD和NH4+-N质量浓度分别为1 100 mg·L-1和100 mg·L  相似文献   

13.
生物阴极式碳纸隔膜微生物燃料电池的反硝化和产电性能   总被引:1,自引:0,他引:1  
为了探讨生物阴极式廉价隔膜微生物燃料电池(microbial fuel cell,MFC)的基本性能,首先以生物反硝化作用为基础构建了生物阴极MFC,并进一步以涂布聚四氟乙烯(PTFE)的廉价碳纸代替昂贵的质子交换膜(PEM)构建碳纸隔膜生物阴极式MFC。研究结果显示,对于生物阴极式MFC,阴极室中最适宜反硝化细菌生长的NO-3-N浓度为99.2 mg/L,此时输出电压最高可达0.11 V,1 h内NO-3-N的去除率达到80.0%,COD去除率为62.8%;以涂PTFE的碳纸代替PEM的生物阴极式MFC与有PEM的MFC最高输出电压基本一致(均达到0.22 V,外阻500Ω),但碳纸隔膜MFC的产电更稳定。结果验证了廉价隔膜生物阴极式MFC的可行性,并为其应用于污水脱氮奠定基础。  相似文献   

14.
阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。  相似文献   

15.
通过向阴极室投加接种污泥构建阴极功能型的微生物燃料电池(MFC),并用其强化降解对硝基苯酚(PNP),考察了MFC运行过程中电极液pH、电导率和温度等环境因子的变化,使用SPSS 13.0统计分析软件考察了各环境因子与MFC输出电压的相关关系,并对阴极生物膜样品采用高通量测序分析其菌群结构。结果表明,MFC输出电压与阳极室、阴极室pH均呈极显著相关关系,电极液pH为6时MFC对PNP的降解性能较优,PNP降解率为100.0%,还原降解中间产物对氨基苯酚(PAP)生成率为32.5%±2.5%,而pH为4时PNP降解率为80.1%±4.1%,PAP生成率为13.3%±2.2%;外接电阻为100Ω时,MFC对PNP降解性能优于外接电阻50、200Ω时。阴极优势菌群中,懒杆菌科(Ignavibacteriaceae)推动了系统电子的传递,而嗜氢菌目(Hydrogenophilales)、伯克霍尔德氏菌目(Burkholderiales)具有辅助还原降解PNP的作用。  相似文献   

16.
采用辊压成型法制备了活性炭(AC)/聚四氟乙烯(PTFE)质量比分别为6、5和3的AC/PTFE电极,并利用SEM对电极表面进行表征。结果表明,随着质量比的降低电极表面活性炭颗粒间的连接更为紧密。以制得的AC/PTFE电极,碳毡分别为微生物燃料电池(MFC)的阴极、阳极,利用AC/PTFE阴极在曝气条件下产生的过氧化氢在阴极处理模拟的罗丹明B废水。研究了不同质量比AC/PTFE阴极对罗丹明B的去除效果及同步产电情况,结果表明以AC/PTFE质量比为6的AC/PTFE阴极在96 h内对罗丹明B的去除率达到96%,MFC获得的最大功率密度为105 mW·m~(-2);同时研究了在阴极液加入0.2 g·L-1Fe~(2+)的条件下,阴极液为不同pH值时,阴极对罗丹明B的去除效果及MFC产电情况。结果表明在阴极液pH=3的情况下,罗丹明B的去除率在36 h内达到了98.9%,MFC的最大功率密度达到210 mW·m~(-2),罗丹明B的去除速率及MFC能量的输出得到了明显提高。  相似文献   

17.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

18.
在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。  相似文献   

19.
为解决传统MFC反硝化菌在好氧阴极难以富集且脱氮效果差的问题,通过构建石墨MFC和碳刷MFC以阴极硝化耦合阳极反硝化的方式脱氮除碳,并对比分析2种不同电极MFC的性能。结果表明:在相同条件下石墨MFC的最大功率密度为6.71 W·m~(-3)NC,开路电压为902.13 mV;碳刷MFC的最大功率密度为5.11 W·m~(-3)NC,开路电压819.04 m V。启动阶段前15 d碳刷MFC的总氮去除率更高,之后石墨MFC的总氮去除率接近100%,碳刷MFC的总氮去除率在95%左右。石墨MFC的COD去除率高达93%,碳刷MFC的COD去除率在83%左右。相比于传统MFC,阴极硝化耦合阳极反硝化MFC不需要调节pH。相比于碳刷电极,石墨电极MFC可以启动和挂膜同时进行,缩短挂膜时间,且产电性能和脱氮除碳效果更好。  相似文献   

20.
温度、pH对微生物燃料电池产电的影响研究   总被引:1,自引:0,他引:1  
采用SPSS分析软件,考察了双室微生物燃料电池(MFC)、单室MFC运行过程中,温度、pH与产电性能的相关关系。结果表明,碳纸双室MFC的日均电压与温度、阳极pH均未呈现显著相关关系,而与阴极pH呈极显著相关关系,产电的决定性因素为阴极反应;石墨毡/碳纸双室MFC日均电压与温度未呈现显著相关关系,而与阳极pH、阴极pH均呈极显著相关关系,产电的决定性因素为pH;单室MFC的产电性能受温度的影响较大,而pH对其影响不显著,对于单室MFC的运行调控应主要从温度入手。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号