首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究奎屯河及玛纳斯河流域氮素对地下水中As浓度的影响,可以深入了解研究区高砷地下水的迁移富集机理.通过对奎屯河和玛纳斯河流域的34个地下水样品的采集和测试,分析了研究区地下水的水化学成分以及地下水中硝酸盐、氨氮与砷浓度之间的关系,并探讨了地下水系统中氧化还原环境对砷迁移富集的影响.结果表明,奎屯河和玛纳斯河流域高砷地下水水化学类型分别主要为SO_4·HCO_3-Na和HCO_3·SO_4-Na型.研究区高砷地下水赋存于低Eh和NO_3~-,高NH_4~+/NT、Fe、Mn的还原性环境中,在水平上主要分布于流域的地下水排泄区、湖积平原处,奎屯河流域地下水样中砷浓度都超标且明显高于玛纳斯河流域;在垂直方向上,主要集中在80—200 m.地下水中砷浓度和NO_3~-浓度呈负相关关系,这是因为在由NO_3~-指示的处于氧化环境的地下水系统中,铁锰化合物未被还原,因此其吸附的砷的化合物也没有释放.地下水中砷浓度随着NH_4~+/NT增大而增大,NH_4~+/NT可以指示地下水系统的还原环境的强弱程度,NH_4~+/N_T越大,地下水系统还原环境越强,含砷化合物越容易产生还原性溶解,将其吸附的砷释放到地下水中,且五价砷被还原成三价砷.  相似文献   

2.
偃师市浅层地下水流动系统水化学特征   总被引:1,自引:0,他引:1  
在水文地质调查和样品分析的基础上,应用水化学统计、离子相关性分析等方法对偃师市浅层地下水流动系统特征和水化学特征进行分析.研究表明:偃师市地下水化学特征具有明显的水平分带性,在沿着补给—径流—排泄的方向上,地下水化学类型由SO4·Cl-Na型水向HCO3-Ca·Mg、HCO3·SO4-Ca·Mg型水演化.总体上研究区地下水中TDS不高,均值为515.29 mg/L,与Mg2+、Ca2+、SO42-、Cl-质量浓度的分布规律具有明显的正相关性,主要表现为平原地区浓度高于南北两侧的丘陵山地.图3,表1,参15.  相似文献   

3.
根据水文地质条件将研究区划分为单一潜水区和多层结构区两个地下水环境背景值单元,以石嘴山市大武口区和惠农区1997年和2008年的浅层地下水水质分析数据为依据,主要采用迭代标准差法和计算分布函数法对两个背景值单元内的15项指标进行了背景值范围的计算.在此基础上比较分析了研究区背景值的时空分异特征,结果表明,气象、水文、人类活动等变化较大的因素会使地下水的化学组分随时间呈现出一定的变化,即地下水环境背景值的时间差异性;而地形地貌、含水层岩性、地下水径流条件的差异是影响不同地下水环境背景值单元内相同指标背景值差异的主要因素,即背景值具有空间差异性.对地下水环境背景值进行水质评价,结果表明,2008年较1997年,地下水质量变差.  相似文献   

4.
李玲  周金龙  齐万秋  陈锋  范薇  安然 《环境化学》2019,38(2):395-403
以和田河流域绿洲区地下水污染调查数据为基础,对地下水"三氮"的污染状况及影响因素进行了研究.结果表明,和田河流域绿洲区地下水"三氮"污染不是很严重,但随时间呈不断加重的趋势.硝酸盐氮是绿洲区地下水中"三氮"的主要存在形态,其含量、检出率和超标率最高,氨氮次之,亚硝酸盐氮最低.地下水中"三氮"含量的空间分布表现出一定的规律性,水平方向上,绿洲南部硝酸盐氮和亚硝酸盐氮的含量普遍高于绿洲北部,而氨氮在北部的分布范围比南部广;垂直方向上,浅层潜水中"三氮"的含量高于中深层潜水;与新疆其他地区相比,和田河流域绿洲区地下水中硝酸盐氮含量较高,亚硝酸盐氮和氨氮含量较低.绿洲区地下水中"三氮"的来源主要与居民日常生活和农业生产有关,其存在形态和分布特征主要与水化学环境、包气带岩性和厚度及地下水径流条件等因素有关.  相似文献   

5.
通过对山西省山阴县高砷地下水分布和污染程度的实地调查,对高砷水环境中砷的形态及富集转化规律进行了研究,并在此基础上形成一套以曝气氧化和加药(加入FeCl2和FeCl3的混合物作为混凝剂)过滤工艺为基础的联合水处理方法.结果表明,在山阴县砷污染严重的地段,地下水的氧化还原电位Eh为-50~142 mV,pH值为8.28~8.73,这种Eh下降、pH升高的地下环境给高砷地下水的形成创造了条件.当地下水中ρ(硫化氢)<140μg·L-1时,用功率为5 W的松宝SB-648双头氧气泵连续曝气1.5 h即可达到基本去除的效果.以25 m深处地下水为例,其ρ(As)为275 μg·L-1,待硫化氢去除后在水中加入摩尔比n(FeCl2):n(FeCl3)=1:1的混合物,连续曝气5 h,水体中60%以上的As(Ⅲ)可转变为As(V).经投加药品和曝气氧化处理后的地下水若能及时通过简易过滤装置,过滤后的水体中ρ(As)仅为5~8 μg·L-1,达到GB 5749-2006<活饮用水卫生标准>,且过滤后的水体中ρ(Fe)为0.03 mg·L-1,远小于GB/T 14848-93<地下水水质标准>规定的Ⅰ类标准.该水处理方法可快速有效地将As(Ⅲ)转化为As(V),并使As(V)与混凝剂发生吸附共沉淀反应,从而达到高效除砷的效果.过滤过程则可以防止氢氧化物胶体与砷酸盐形成的絮体二次进入环境,同时进一步降低水体中铁离子含量.该方法适用于我国广大高砷水地区家庭分散式供水的处理.  相似文献   

6.
采集了矿区不同区域的72个土壤样品以及对照背景区的8个土壤样品,采用液相色谱-原子荧光联用技术测定了土壤中砷的含量,对乌达煤火污染点土壤中砷含量进行了定量分析,并对该区土壤砷污染程度进行了初步评价.结果表明,矿区土壤中砷含量范围为0.74—55.41 mg·kg~(-1),平均值12.59 mg·kg~(-1),约是该区土壤背景值(3.83 mg·kg-1)的3.29倍;不同采样点土壤中砷含量及土壤污染程度存在明显差异:烟点土壤污染点土壤非污染点土壤.乌达矿区土壤中存在砷污染,煤层自燃是该区土壤中砷污染的主要来源之一.  相似文献   

7.
含砷废水的硫化铁处理   总被引:7,自引:2,他引:7  
本文对硫化铁除坤进行了研究,在比较宽广的pH值(2—9)范围内,硫化铁对砷(Ⅴ)、砷(Ⅲ)的去除率>99%,出水砷含量低于废水排放标准(≤0.5mg/l)。在适宜的pH值范围内,低浓度砷废水经硫化铁处理后出水砷含量还低于饮用水卫生标准(≤0.05mg/l)。这是由于硫化铁除砷有沉淀转化、凝聚和中和三种作用的结果。  相似文献   

8.
通过水文地质调查、采样分析并结合地下水流动系统理论,对呼和浩特市承压水水化学特征及水质污染情况进行研究.共采集地下承压水样67组,分析了p H、氯化物、总硬度、高锰酸盐指数、铁锰、氨氮等23项指标.结果表明:研究区大青山山前及中—东部承压水水质较好,仅硝酸盐氮有一处超标;西南部承压水水质相对较差,高锰酸盐指数、铁锰、氨氮等出现超标现象.氨氮是研究区承压水的主要污染物,超标率达19.4%,最高浓度为10.85mg/L,高浓度区处于地下水的排泄区,主要集中在研究区西南部的后本滩及台阁牧镇一带.受人类活动的影响部分氮素通过断层或越流补给承压含水层,在承压含水层相对缺氧的还原环境中,硝化作用受到抑制,导致氨氮不断积累.  相似文献   

9.
珠江三角洲小流域地下水化学特征及演化规律   总被引:2,自引:0,他引:2  
珠江三角洲地下水环境日益恶化,已成为制约经济社会发展的重要因素。以珠海市具有典型特征的闭合小流域作为研究对象,分旱、雨两季采集地下水分析主要离子及D、18O同位素,全面系统地研究了地下水水化学的时空变异特征与演变规律。结果表明:研究区内地下水主要受大气降水及附近地表水体渗透补给,以蒸发及地下水径流排泄,季节变化对区域内水化学空间变异性影响较小。沿地下水流方向(补给区-径流区-排泄区),地下水化学类型主要从Ca-Na(Mg)-HCO3型向Na-Cl和Na-K-HCO3-CO3型演化,风化-溶滤、离子交换、海陆交互作用是控制当地地下水质演变的主要水文化学过程。  相似文献   

10.
本文基于新疆喀什地区西部平原区地下水污染调查数据,重点分析了地下水超标重金属(Mn、Fe、As、Pb和Cd)的空间分布特征与成因.喀什地区西部地下水Mn、Fe超标区呈连续分布,具有普遍性;As超标区呈岛状分布,范围较小;Pb和Cd超标呈点状分布,分别与Fe和As超标高值区相伴.流域上游地下水未超标区大于下游.结果表明,Mn、Fe、As超标高值区是在原生地质环境背景下,工业污染因素增强、区域地下水开采等因素共同作用形成的.相关分析表明,Mn和Fe、Mn和Pb、Fe和Pb、As和Cd质量浓度间呈显著的正相关关系,说明流域人为污染因素在加强.本文针对喀什地区西部地下水超标重金属之间相关性,结合其空间分布特点及成因,提出了防治地下水污染的建议.  相似文献   

11.
河套灌区浅层地下水氮浓度和地下水埋深的季节变化规律调查结果表明:3月地下水NO3--N和TN浓度显著高于5、7和9月,地下水埋深也比5月和7月深。不同类型的井水N浓度差异较大:农田与庭院的井水NO3--N浓度显著高于村庄附近的井水,而NH4+-N和TN则表现为庭院井水浓度显著高于农田和村庄。地下水氮形态以NO3--N为主,全年17.1%的水井地下水NO3--N浓度高于10 mg.L-1,最高达184.4 mg.L-1。在灌溉量和其他生产条件相同的情况下,沙壕渠试验站农场内施肥区井水NO3--N浓度[(17.55±15.02)mg.L-1]明显高于未施肥区[(7.67±4.48)mg.L-1],且65.5%的水样NO3--N浓度超过WHO规定的生活饮用水NO3--N浓度上限值(10 mg.L-1),而未施肥区仅有27.6%的水样超标。井水NO3--N的来源主要为农田氮肥与动物粪肥,当地地下水NO3--N污染已不容忽视。  相似文献   

12.
为探讨不同水稻材料对砷吸收、积累的差异性,聚类筛选获取砷高耐性材料,以85份水稻亲本材料为研究对象,通过水培实验,分析砷处理下不同水稻植株生长性状和砷积累特征,比较不同水稻材料的砷耐性和砷积累量差异,并以3种耐性指数为指标,综合筛选砷高耐性材料.结果表明:(1)与对照相比,砷处理下水稻的生物量、总根长和株高受到不同程度的抑制.水稻地上部砷含量和积累量在2 mg/L砷处理下最大值分别是最小值的7.41倍和18.21倍,而在8 mg/L砷处理下最大值分别是最小值的10.01倍和49.90倍,说明材料间耐性差异显著,有利于砷高耐性水稻材料的筛选.(2)综合3种耐性指数进行聚类分析,得到华航35号、五山丰占、蒲江抗源-5-2、CHETUMALA-86、雅康2A和雅康3A等6种砷高耐性材料以及雅恢2119、Wxj-74、Wxj-380、MR183-2和IR28153等5种砷低耐性材料.在2 mg/L砷处理下,砷低耐性材料平均砷含量、积累量和生物量分别为高耐性材料的3.11、1.71和0.49倍,8 mg/L砷处理下,砷低耐性材料分别为高耐性材料的1.85、1.34和0.77倍,说明高耐性材料较低耐性材料能更好适应砷胁迫.(3)高砷浓度处理下的水稻地上部平均砷含量和积累量显著高于低砷浓度处理;两类耐性水稻材料在砷处理下地上部平均砷含量、积累量和生物量差异显著,表现为高耐性材料平均砷含量、积累量显著低于低耐性材料,而生物量显著高于低耐性材料.综上所述,通过不同砷浓度处理,根据耐性指数差异进行聚类,得到6种砷高耐性材料,可作为砷抗性育种的亲本材料,可为中轻度砷污染农田水稻生产提供砷耐性种质资源.  相似文献   

13.
以淮南某煤矿为例,从煤矿堆积的矸石山邻近农田采集了表层土壤,在测定土壤中Zn、Pb、Cd和Cu浓度和分析重金属形态基础上,利用蚕豆(Vicia faba L.)早期生长及微核试验检测了土壤生态毒性,同时,采用污染负荷指数、潜在生态风险指数和基于微核率的污染指数比较了土壤重金属的生态风险。结果表明:煤矿区农田土壤中Zn、Pb、Cd和Cu浓度均高于淮南土壤背景值,个别样点Cd浓度高出淮南土壤背景值7.83倍(S3:0.47 mg·kg-1)和6.83倍(S4:0.41 mg·kg-1),但4种重金属浓度均低于国家土壤环境质量(GB15618─2008)二级标准。矿区土壤重金属虽均以残渣态为主,但交换态(6.62%~23.33%)和潜在可利用态的比例(32.90%~57.94%)比对照高,说明煤矿区土壤重金属有效性较高。个别土壤样点(S4)较高的重金属浓度导致发芽率和根长显著降低,而矿区土壤各样点的微核率较校园土均显著增加,这表明煤矿区土壤确实存在一定生态毒性,且微核可能比发芽率和根长对土壤重金属的污染更敏感。同时,3种污染评价指数均表明矿区土壤处于轻度-中度风险水平(以校园土为参考),说明煤矿区土壤确实产生了一定生态风险,而微核率的污染指数与潜在生态风险指数对各样点的风险评价结果较为一致,表明微核代表的生态毒性评价是煤矿区重金属生态风险评价的有益补充。  相似文献   

14.
为对鄱阳湖流域的天然劣质地下水进行锰富集研究,对在该流域收集的243组地下水监测数据,应用水文地球化学方法和地理信息系统,分析了地下水中锰的分布特征及富集原理,并结合美国环境保护局(United States Environmental Protection Agency, US EPA)的非致癌健康风险评价模型进行了地下水中锰的健康风险评估。结果表明:(1)研究区地下水类型主要为HCO3-Ca型和Cl-Ca·Mg型;(2)约有38.2%的区域地下水中锰浓度为0.1~0.4 mg·L-1,34.7%的区域锰浓度>0.4 mg·L-1;高浓度锰在山地丘陵和平原区域均有分布,分别受到氧化还原环境控制;(3)鄱阳湖流域范围内高锰地下水分布较为广泛,但对所有成人和绝大部分儿童均不存在非致癌风险,绝大部分区域无需进行额外管控。该研究结果可为鄱阳湖流域的水源地选取和保护提供依据。  相似文献   

15.
新疆喀什地区地下水氟的空间分布规律及其富集因素分析   总被引:1,自引:0,他引:1  
陈劲松  周金龙  陈云飞  张杰  魏兴  范薇 《环境化学》2020,39(7):1800-1808
高氟地下水严重影响当地居民的身体健康.基于新疆喀什地区571个地下水样的氟离子实测含量,运用Mapgis软件绘制研究区地下水氟含量分布图,结果表明,研究区地下水氟含量呈西部、北部高于东部、南部,中部最低的特点;山麓斜坡冲洪积砾质平原区氟含量表现为浅层潜水高于深层潜水,中下游河流冲积平原区地下水氟含量表现为潜水浅层承压水深层承压水.采用绘制Gibbs图、Piper三线图、离子比例图等方法对研究区水化学环境特征及地下水氟的富集因素进行研究,结果表明,研究区地下水氟源于山前含氟基岩;受地下水径流条件影响,研究区地下水氟含量平均值表现为中下游河流冲积平原区山麓斜坡冲洪积砾质平原区;蒸发浓缩作用使F~-浓度进一步增大;研究区高氟地下水水化学类型主要为HCO_3-Na和Cl·SO_4-Na型,地下水弱碱性环境有助于F~-的富集.  相似文献   

16.
不同因素对多硫化钙处理地下水中Cr(Ⅵ)效果影响   总被引:1,自引:0,他引:1  
选用多硫化钙为还原剂,进行地下水中Cr(Ⅵ)去除效果的研究。主要考察了多硫化钙投加量、溶液p H、温度、Mn(II)、Fe(III)、腐殖酸(HA)存在条件下,对多硫化钙处理Cr(Ⅵ)效果的影响。结果表明:当多硫化钙与Cr(Ⅵ)的摩尔比由1∶1变到5∶1时,去除率从41.03%增加到100.00%;溶液p H值从6.0增上升到9.0时,去除率下降27.16%;水环境温度由(7±1)℃增加到(27±1)℃时,去除率达到100.00%所需反应时间,缩短了4~6倍;当地下水中含有Mn(II),随着Mn(II)质量浓度升高(0.00~10.00 mg·L-1),Cr(Ⅵ)浓度低于检测线所需要的时间缩短3倍;当地下水中含有Fe(III),Fe(III)质量浓度从0.00 mg·L-1增加到10.00 mg·L-1,去除率增加9.05%;当地下水中含有HA(0.00~15.00 mg·L-1),去除率由99.31%降低至90.28%。(7)多硫化钙与六价铬的反应产物的X射线衍射光谱图像中2θ值为18.2°、19.36°、26.67°与Cr(OH)3,2θ值为23.02°与单质S的标准卡片匹配度较高。另外,对含有11.36 mg·L-1 Cr(Ⅵ)实际污染地下水的处理效果表明,Cr(Ⅵ)的去除率达到99.78%,残留浓度达到GB/T 1448—1993地下水质量标准III类标准,说明多硫化钙修复实际铬污染地下水具有良好的应用前景。  相似文献   

17.
本文采用液上气相色谱法测定水中硝基苯,5μl进样量的最低检出浓度为0.1mg/l;1ml进样量的最低检出浓度为1μg/l;在0.94—5.2mg/l浓度范围内,六次测定的相对标准偏差小于8.5%。应用本法可测定地面水及工业废水中的硝基苯。测定成份复杂工业废水中的硝基苯,与其它方法相比,本法较为简单。  相似文献   

18.
为明确蔬菜常用农药在地下水中的环境风险,运用China-Pearl和SCI-GROW模型开展地下水环境暴露评估,并根据我国成人和儿童暴露参数推导25种农药预测无效应浓度(PNEC)。研究发现,25种农药PECgw为0~18.340μg·L-1,成年人PNECgw为0.003~19.654 mg·L-1,儿童PNECgw为0.001~23.253 mg·L-1。成年人和儿童的RQgw值均小于1,表明25种农药按照登记用量使用,我国成人和各年龄阶段儿童直接饮用施用农药区域地下水的环境风险可接受。  相似文献   

19.
为弄清大同盆地地下水中影响砷的迁移、富集的主要地球化学与生物地球化学过程,为区域供水安全提供指导作用,针对高砷地下水系统开展了水文地球化学与含水层沉积物全岩地球化学研究;并在此基础上探讨了研究区高砷地下水成因。结果表明,研究区高砷地下水为偏碱性、强还原环境,砷含量为0.31~452μg·L-1,主要以砷酸盐形式存在,地下水中砷与三价铁的浓度有显著的相关性。高砷含水层沉积物中有机质、铁与砷含量表现出显著相关性。以上结果说明,碱性还原环境有利于地下水中砷的富集;微生物参与下,沉积物相有机质的氧化和Fe氧化物/氢氧化物的还原过程是本区高砷地下水形成的主控因素。  相似文献   

20.
矿山关闭后,水位迅速回弹升高,区域水动力场发生改变进而影响到水化学场的演变,并伴随着严重的区域水环境问题。为研究闭坑矿区水体水化学特征和成因,系统采集丰水期、枯水期背景点、地下水和矿井水样测定现场参数、δ18O和δD值、主量离子等,综合利用多元统计分析、同位素示踪和水化学计量分析等分析方法开展不同水体的水化学特征及成因分析。结果表明,(1)δ18O和δD组成说明研究区地下水和矿井水主要来源为大气降水,且受到了不同程度的蒸发影响;同一季节内背景点、地下水、矿井水同位素组成具有分区聚集性,丰水期同位素相对亏损,枯水期相对富集,表明不同水体水力联系密切;分层聚类分析和水化学同样揭示了不同含水层之间存在密切的水力联系。(2)研究区水化学具有较大差异。背景点、地下水、矿井水TDS取值范围分别为44.18—138.86、43.39—6 917.6、3 329.22—4 174.20 mg·L-1,从淡水到咸水均有分布;p H取值范围分别为4.39—8.2、2.75—7.9、2.87—2.92,呈酸性、弱酸性、中性、弱碱性。水化学类型...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号