首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds. Received: 3 May 1999 / Received in revised form: 22 December 1999 / Accepted: 23 January 2000  相似文献   

2.
Foraging and the mechanisms that regulate the quantity of food collected are important evolutionary and ecological attributes for all organisms. The decision to collect pollen by honey bee foragers depends on the number of larvae (brood), amount of stored pollen in the colony, as well as forager genotype and available resources in the environment. Here we describe how brood pheromone (whole hexane extracts of larvae) influenced honey bee pollen foraging and test the predictions of two foraging-regulation hypotheses: the indirect or brood-food mechanism and the direct mechanism of pollen-foraging regulation. Hexane extracts of larvae containing brood pheromone stimulated pollen foraging. Colonies were provided with extracts of 1000 larvae (brood pheromone), 1000 larvae (brood), or no brood or pheromone. Colonies with brood pheromone and brood had similar numbers of pollen foragers, while those colonies without brood or pheromone had significantly fewer pollen foragers. The number of pollen foragers increased more than 2.5-fold when colonies were provided with extracts of 2000 larvae as a supplement to the 1000 larvae they already had. Within 1 h of presenting colonies with brood pheromone, pollen foragers responded to the stimulus. The results from this study demonstrate some important aspects of pollen foraging in honey bee colonies: (1) pollen foragers appear to be directly affected by brood pheromone, (2) pollen foraging can be stimulated with brood pheromone in colonies provided with pollen but no larvae, and (3) pollen forager numbers increase with brood pheromone as a supplement to brood without increasing the number of larvae in the colony. These results support the direct-stimulus hypothesis for pollen foraging and do not support the indirect-inhibitor, brood-food hypothesis for pollen-foraging regulation. Received: 5 March 1998 / Accepted after revision: 29 August 1998  相似文献   

3.
The daily patterns of task performance in honey bee colonies during behavioral development were studied to determine the role of circadian rhythmicity in age-related division of labor. Although it is well known that foragers exhibit robust circadian patterns of activity in both field and laboratory settings, we report that many in-hive tasks are not allocated according to a daily rhythm but rather are performed 24 h per day. Around-the-clock activity at the colony level is accomplished through the performance of some tasks by individual workers randomly with respect to time of day. Bees are initially arrhythmic with respect to task performance but develop diel rhythmicity, by increasing the occurrence of inactivity at night, prior to becoming foragers. There are genotypic differences for age at onset of rhythmicity and our results suggest that these differences are correlated with genotypic variation in rate of behavioral development: genotypes of bees that progressed through the age polyethism schedule faster also acquired behavioral rhythmicity at an earlier age. The ontogeny of circadian rhythmicity in honey bee workers ensures that essential in-hive behaviors are performed around the clock but also allows the circadian clock to be engaged before the onset of foraging. Received: 6 October 1997 / Accepted after revision: 28 March 1998  相似文献   

4.
Pollen storage in a colony of Apis mellifera is actively regulated by increasing and decreasing pollen foraging according to the “colony's needs.” It has been shown that nectar foragers indirectly gather information about the nectar supply of the colony from nestmates without estimating the amount of honey actually stored in the combs. Very little is known about how the actual colony need is perceived with respect to pollen foraging. Two factors influence the need for pollen: the quantity of pollen stored in cells and the amount of brood. To elucidate the mechanisms of perception, we changed the environment within normal-sized colonies by adding pollen or young brood and measured the pollen-foraging activity, while foragers had either direct access to them or not. Our results show that the amount of stored pollen, young brood, and empty space directly provide important stimuli that affect foraging behavior. Different mechanisms for forager perception of the change in the environment are discussed. Received: 13 June 1998 / Accepted after revision: 25 October 1998  相似文献   

5.
Division of labor, where thousands of individuals perform specific behavioral acts repeatedly and non-randomly, is the hallmark of insect societies. Virtually nothing is known about the underlying neurophysiological processes that direct individuals into specific behavioral roles. We demonstrate that sensory-physiological variation in the perception of sucrose in honeybees measured when they are 1 week old correlates with their foraging behavior 2–3 weeks later. Workers with the lowest response thresholds became water foragers, followed with increasing response thresholds by pollen foragers, nectar foragers, bees collecting both pollen and nectar, and finally those returning to the colony empty (water<pollen<nectar<both<empty). Sucrose concentrations of nectar loads were positively correlated with response thresholds measured on 1-week-old bees. These results demonstrated how the variable response thresholds of a sensory-physiological process, the perception of sucrose, is causally linked to the division of labor of foraging. Received. 28 June 1999 / Received in revised form: 2 November 1999 / Accepted: 20 November 1999  相似文献   

6.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

7.
In an experimental set-up, a colony of the stingless bee Melipona fasciata demonstrated its ability to choose the better of two nectar sources. This colony pattern was a result of the following individual behavioural decisions: continue foraging, abandon the feeder, restart foraging and initiate foraging. Only very rarely did individuals switch from one feeder to the other. With the first combination of a rich (2.7 M) and a poor (0.8 M) feeder M. fasciata behaved differently from Apis mellifera. Recruitment occurred to both feeders and the poor feeder was not abandoned completely. When the poor feeder was set to 0.4 M, M. fasciata abandoned the poor feeder rapidly and allocated more foragers to the rich feeder. These patterns were similar to those reported for A. mellifera with the first combination of feeders. Over a sequence of 4 days, experienced bees increasingly determined the colony patterns, and the major function of communication between workers became the reactivation of experienced foragers. The foragers modulated their behaviour not only according to the profitability of the feeder, but also according to previous experience with profitability switches. Thus, experience and communication together regulated colony foraging behaviour. These findings and the results of studies with honeybees suggest that M. fasciata and honeybees use similar decision-making mechanisms and only partly different tools. Received: 21 December 1998 / Accepted: 5 January 1999  相似文献   

8.
Genetic variability within insect societies may provide a mechanism for increasing behavioral diversity among workers, thereby augmenting colony efficiency or flexibility. In order to assess the possibility that division of labor has a genetic component in the eusocial wasp Polybia aequatorialis, I asked whether the genotypes of workers within colonies correlated with behavioral specialization. Workers specialized by foraging for one of the four materials (wood pulp, insect prey, nectar, or water) gathered by their colonies. I collected foragers on 2 days from each of three colonies and identified the material the foragers were carrying when collected. I produced random amplified polymorphic DNA (RAPD) markers from the genomic DNA of these foragers and estimated genotypic similarity of foragers based on sharing of variable RAPD marker bands. Contingency tests on 20 variable loci per colony showed statistically significant (P <0.05) biases in RAPD marker frequencies among forager types in the three colonies. Patterns of association of RAPD marker bands with specializations were constant in two colonies, but changed between collection days in one colony. RAPD marker biases suggest that division of labor among workers includes a genetic component in P. aequatorialis. Colony-level selection on variation in division of labor is a possible factor favoring the evolutionary maintenance of high genotypic variability (low relatedness) in epiponine wasp colonies and in other eusocial insects. Received: 18 July 1995/Accepted after revision: 1 October 1995  相似文献   

9.
Dominance interactions affected patterns of non-reproductive division of labor (polyethism) in the eusocial wasp Mischocyttarus mastigophorus. Socially dominant individuals foraged for food (nectar and insect prey) at lower rates than subordinate individuals. In contrast, dominant wasps performed most of the foraging for the wood pulp used in nest construction. Social dominance also affected partitioning of materials collected by foragers when they returned to the nest. Wood pulp loads were never shared with nest mates, while food loads, especially insect prey, were often partitioned with other wasps. Dominant individuals on the nest were more likely to take food from arriving foragers than subordinate individuals. The role of dominance interactions in regulating polyethism has evolved in the eusocial paper wasps (Polistinae). Both specialization by foragers and task partitioning have increased from basal genera (independent-founding wasps, including Mischo-cyttarus spp.) to more derived genera (swarm-founding Epiponini). Dominance interactions do not regulate forager specialization or task partitioning in epiponines. I hypothesize that these changes in polyethism were enabled by the evolution of increased colony size in the Epiponini. Received: 8 December 1997 / Accepted after revision: 28 March 1998  相似文献   

10.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

11.
Individual and colony-level foraging behaviors were evaluated in response to changes in the quantity or nutritional quality of pollen stored within honeybee (Apis mellifera L.) colonies. Colonies were housed in vertical, three-frame observation hives situated inside a building, with entrances leading to the exterior. Before receiving treatments, all colonies were deprived of pollen for 5 days and pollen foragers were marked. In one treatment group, colony pollen reserves were quantitatively manipulated to a low or high level, either by starving colonies of pollen or by providing them with a fully provisioned frame of pollen composed of mixed species. In another treatment group, pollen reserves were qualitatively manipulated by removing pollen stores from colonies and replacing them with low- or high-protein pollen supplements. After applying treatments, foraging rates were measured four times per day and pollen pellets were collected from experienced and inexperienced foragers to determine their weight, species composition, and protein content. Honeybee colonies responded to decreases in the quantity or quality of pollen reserves by increasing the proportion of pollen foragers in their foraging populations, without increasing the overall foraging rate. Manipulation of pollen stores had no effect on the breadth of floral species collected by colonies, or their preferences for the size or protein content of pollen grains. In addition, treatments had no effect on the weight of pollen loads collected by individual foragers or the number of floral species collected per foraging trip. However, significant changes in foraging behavior were detected in relation to the experience level of foragers. Irrespective of treatment group, inexperienced foragers exerted greater effort by collecting heavier pollen loads and also sampled their floral environment more extensively than experienced foragers. Overall, our results indicate that honeybees respond to deficiencies in the quantity or quality of their pollen reserves by increasing the gross amount of pollen returned to the colony, rather than by specializing in collecting pollen with a greater protein content. Individual pollen foragers appear to be insensitive to the quality of pollen they collect, indicating that colony-level feedback is necessary to regulate the flow of protein to and within the colony. Colonies may respond to changes in the quality of their pollen stores by adjusting the numbers of inexperienced to experienced foragers within their foraging populations.  相似文献   

12.
Every recruitment system in social insects requires some individuals that serve as scouts, foragers that search independently for food sources. It is not well understood which factors influence whether an individual becomes a scout or a recruit, nor how the division of labor between the two forager groups is regulated. It is shown here for honeybees (Apis mellifera), using two different molecular techniques, that there is a genetically based difference in the probability that individuals will scout independently for food. In contrast to earlier suggestions, experimental tests showed that the age of a bee does not seem to influence its probability of becoming a scout or a recruit. Furthermore, scout bees do not search opportunistically for either pollen or nectar but, rather, individuals have preferences that are genetically based. These findings are discussed in the framework of foraging regulation by specialization in honeybees and the adaptive significance of polyandry. Received: 23 October 1997 / Accepted after revision: 10 April 1998  相似文献   

13.
Multiple mating by honeybee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honeybee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, each composed of 20 subfamilies, collect more pollen than do genotypically similar colonies, each composed of a single subfamily. However, genotypically similar colonies collect greater varieties of pollen than do genotypically diverse colonies. Further, the composition of collected pollen types is less similar among genotypically similar colonies than among genotypically diverse colonies. The response threshold model predicts that genotypic subsets of workers vary in their response to task stimuli. Consistent with this model, our findings suggest that genotypically diverse colonies likely send out fewer numbers of foragers that independently search for pollen sources (scouts) in response to protein demand by the colony, resulting in a lower variety of collected pollen types. The cooperative foraging strategy of honeybees involves a limited number of scouts monitoring the environment that then guide the majority of foragers to high quality food sources. The genetic composition of the colony appears to play an important role in the efficiency of this behavior.  相似文献   

14.
Summary The honey bee colony presents a challenging paradox. Like an organism, it functions as a coherent unit, carefully regulating its internal milieu. But the colony consists of thousands of loosely assembled individuals each functioning rather autonomously. How, then, does the colony acquire the necessary information to organize its work force? And how do individuals acquire information about specific colony needs, and thus know what tasks need be performed? I address these questions through experiments that analyze how honey bees acquire information about the colony's need for pollen and how they regulate its collection. The results demonstrate features of the colony's system for regulating pollen foraging: (1) Pollen foragers quickly acquire new information about the colony's need for pollen. (2) When colony pollen stores are supplemented, many pollen foragers respond by switching to nectar foraging or by remaining in the hive and ceasing to forage at all. (3) Pollen foragers do not need direct contact with pollen to sense the colony's change of state, nor do they use the odor of pollen as a cue to assess the colony's need for pollen. (4) Pollen foragers appear to obtain their information about colony pollen need indirectly from other bees in the hive. (5) The information takes the form of an inhibitory cue. The proposed mechanism for the regulation of pollen foraging involves a hierarchical system of information acquisition and a negative feedback loop. By taking advantage of the vast processing capacity of large numbers of individuals working in parallel, such a system of information acquisition and dissemination may be ideally suited to promote efficient regulation of labor within the colony. Although each individual relies on only limited, local information, the colony as a whole achieves a finely-tuned response to the changing conditions it experiences.  相似文献   

15.
The age at which worker honey bees begin foraging varies under different colony conditions. Previous studies have shown that juvenile hormone (JH) mediates this behavioral plasticity, and that worker-worker interactions influence both JH titers and age at first foraging. These results also indicated that the age at first foraging is delayed in the presence of foragers, suggesting that colony age demography directly influences temporal division of labor. We tested this hypothesis by determining whether behavioral or physiological development can be accelerated, delayed, or reversed by altering colony age structure. In three out of three trials, earlier onset of foraging was induced in colonies depleted of foragers compared to colonies depleted of an equal number of bees across all age classes. In two out of three trials, delayed onset of foraging was induced in colonies in which foragers were confined compared to colonies with free-flying foragers. Finally, in three out of three trials, both endocrine and exocrine changes associated with reversion from foraging to brood care were induced in colonies composed of all old bees and devoid of brood; JH titers decreased and hypopharyngeal glands regenerated. These results demonstrate that plasticity in age-related division of labor in honey bee colonies is at least partially controlled by social factors. The implications of these results are discussed for the recently developed ‘‘activator-inhibitor” model for honey bee behavioral development. Received: 8 November 1995/Accepted after revision: 10 May 1996  相似文献   

16.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

17.
Kin conflict over caste determination in social Hymenoptera   总被引:2,自引:0,他引:2  
We argue that caste determination, the process whereby females in the social Hymenoptera develop into either queens or workers, is subject to kin-selected conflict. Potential conflict arises because developing females are more closely related to their would-be offspring than to those of other females. Therefore, they may favour becoming queens contrary to the interests of other developing females and of existing queens and workers. We suggest two contexts leading to potential caste conflict. The first occurs when queens are reared in a reproductive phase following an ergonomic phase of worker production, while the second occurs when queens and workers are reared simultaneously. The first context assumes that workers' per capita contribution to colony survival and productivity falls with rising colony size. A critical feature influencing whether potential conflict is realized is the extent to which developing females can determine their own caste (“self-determination”). Self-determination is facilitated when female larvae control their own food intake and when queen-worker size dimorphism is low. We know of no strong evidence for actual conflict over caste fate arising in the first context. However, stingless bees and polygynous ants with excess queen-potential larvae that are either forced to develop as workers or are culled as adults demonstrate actual caste conflict in the second context. Caste conflict does not preclude caste regulation for “the good of the colony”, but such regulation is contingent on either the absence of potential conflict or on developing females losing control of their caste fate. Received: 22 March 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

18.
Social insect foragers have to make foraging decisions based on information that may come from two different sources: information learned and memorised through their own experience (“internal” information) and information communicated by nest mates or directly obtained from their environment (“external” information). The role of these sources of information in decision-making by foragers was studied observationally and experimentally in stingless bees of the genus Melipona. Once a Melipona forager had started its food-collecting career, its decisions to initiate, continue or stop its daily collecting activity were mainly based upon previous experience (activity on previous days, the time at which foraging was initiated the day(s) before, and, during the day, the success of the last foraging flights) and mediated through direct interaction with the food source (load size harvested and time to collect a load). External information provided by returning foragers advanced the start of foraging of experienced bees. Most inexperienced bees initiated their foraging day after successful foragers had returned to the hive. The start of foraging by other inexperienced bees was stimulated by high waste-removal activity of nest mates. By experimentally controlling the entries of foragers (hence external information input) it was shown that very low levels of external information input had large effect on the departure of experienced foragers. After the return of a single successful forager, or five foragers together, the rate of forager exits increased dramatically for 15 min. Only the first and second entry events had large effect; later entries influenced forager exit patterns only slightly. The results show that Melipona foragers make decisions based upon their own experience and that communication stimulates these foragers if it concerns the previously visited source. We discuss the organisation of individual foraging in Melipona and Apis mellifera and are led to the conclusion that these species behave very similarly and that an information-integration model (derived from Fig. 1) could be a starting point for future research on social insect foraging. Received: 16 April 1997 / Accepted after revision: 30 August 1997  相似文献   

19.
Encounter rate and task allocation in harvester ants   总被引:7,自引:0,他引:7  
As conditions change, social insect colonies adjust the numbers of workers engaged in various tasks, such as foraging and nest work. This process of task allocation operates without central control; individuals respond to simple, local cues. This study investigates one such cue, the pattern of an ant's interactions with other workers. We examined how an ant's tendency to perform midden work, carrying objects to and sorting the refuse pile of the colony, is related to the recent history of the ant's brief antennal contacts, in laboratory colonies of the red harvester ant, Pogonomyrmex barbatus. The probability that an ant performed midden work was related to its recent interactions in two ways. First, the time an ant spent performing midden work was positively correlated with the number of midden workers that ant had met while it was away from the midden. Second, ants engaged in a task other than midden work were more likely to begin to do midden work when their rate of encounter per minute with midden workers was high. Cues based on interaction rate may enable ants to respond to changes in worker numbers even though ants cannot count or assess total numbers engaged in a task. Received: 1 July 1998 / Accepted: 15 November 1998  相似文献   

20.
This study investigates the recruitment communication mechanisms of a stingless bee, Melipona panamica, whose foragers can evidently communicate the three-dimensional location of a good food source. To determine if the bees communicate location information inside or outside the nest, we conducted removal experiments by training marked foragers to one of two identical feeders and then separating these experienced foragers from potential recruits as they left the nest. The feeders were positioned to test the communication of each dimension. The results show that recruits do not simply follow experienced foragers to the food source. Height and distance are communicated within the nest, while direction is communicated outside the nest. We then examined the pulsed sounds produced by recruiting foragers. While unloading food, recruiting foragers produced several short pulses and one or more very long pulses. On average, the longest unloading pulse per performance was 31–50% longer (P ≤ 0.018) for bees foraging on the forest floor than for bees foraging at the top of the forest canopy (40 m high). While dancing, recruiting foragers produced sound pulses whose duration was positively correlated with the distance to the food source (P < 0.001). Dancing recruiters also produced several short sound pulses followed by one or more long pulses. The longest dance pulse per performance was 291 ± 194 ms for a feeder 25 m from the nest and 1858 ± 923 ms for a feeder 360 m away from the nest. The mechanism of directional communication remains a mystery. However, the direction removal experiment demonstrates that newcomers cannot use forager-deposited scent marks for long-distance orientation (>100 m from the nest). Received: 25 September 1997 / Accepted after revision: 31 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号