首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的研究真空电弧镀方法制备的超高温金属涂层HY11在1200℃下的高温氧化行为。方法用真空电弧镀技术(AIP)在单晶镍基高温合金DD6上制备超高温金属涂层HY11,采用HB 5258循环氧化方法进行1200℃循环氧化试验,通过试验过程中试样质量变化评价涂层氧化寿命。通过扫描电镜(SEM)分析氧化后的试样显微形貌,用X-射线衍射仪分析涂层材料的相结构,通过氧化速率对涂层材料抗氧化性能进行表征。结果采用单靶真空电弧镀技术制备的HY11涂层,经过1050℃真空条件下扩散2h,涂层厚度为50~60?m,扩散区厚度为10~15μm,涂层微观组织均匀致密,涂层合金界面清晰平整。DD6合金的1200℃循环氧化寿命仅仅为4 h,HY11涂层在1200℃的循环氧化寿命近300 h。沉积态涂层HY11相结构主要以Al_2O_3和Ni3Al为主。氧化后涂层材料表面形成的氧化膜以Al_2O_3为主。结论 HY11涂层在1200℃的循环氧化寿命为298 h,极大地提高了DD6合金在1200℃的循环氧化寿命。  相似文献   

2.
涡轮叶片NiCoCrAlYTa涂层抗高温氧化和腐蚀性能测试研究   总被引:1,自引:0,他引:1  
目的保障涡轮叶片的安全可靠应用,研究NiCoCrAlYTa涂层的高温氧化和燃气热腐蚀行为。方法针对有无涂层的涡轮叶片试样,分别进行1050℃/100 h的抗氧化试验和950℃/100 h的燃气热腐蚀试验,同时分析试验后合金基体和涂层的微观形貌。结果抗氧化试验后,无涂层试样的平均氧化皮脱落量和平均氧化速率分别是带涂层试样的10倍和3倍左右,无涂层试样叶身表面可见大量氧化皮脱落形成的凹坑,带涂层试样的涂层完好,基体未见氧化特征。燃气热腐蚀试验后,无涂层试样的腐蚀速率是带涂层试样的3倍,无涂层试样叶身表面可见较多腐蚀坑,有涂层试样的涂层未被明显腐蚀。结论 NiCoCrAlYTa涂层在经过长时间高温氧化和腐蚀后仍能形成完整的Al_2O_3膜,从而起到较好的保护作用。Ta、Y等元素对Al_2O_3氧化膜的形成及质量具有促进作用。  相似文献   

3.
目的在实现钼资源循环再利用的同时,提高钼合金高温抗氧化性能。方法将废弃硅钼棒破碎、球磨制成粉末,并结合玻璃粉和硅粉作为原料,采用浆料法在钼基体上制备MoSi_2基抗氧化涂层。通过扫描电子显微镜、X射线衍射和1400℃静态等温氧化实验等分析涂层的微观组织、结构及抗氧化性能。结果制备的MoSi_2基抗氧化涂层厚度约500μm,涂层整体上呈现出相对致密的结构。在1400℃氧化20h后,涂层质量增量为5.88 mg/cm2,呈现出较好的防氧化效果。结论利用浆料法,以废弃硅钼棒为原料,在实现钼资源回收再利用的同时,为钼合金表面制备具有较好抗氧化性能的MoSi_2基抗氧化涂层。氧化过程中,涂层在表面形成了一层致密的SiO2玻璃,具有较强的阻氧能力,减少氧气向基体的渗入,可以在高温氧化环境有效提升钼基体的抗氧化能力。  相似文献   

4.
目的探究三种电源模式对ADC12高硅铝合金微弧氧化膜层性能的影响,从中选择对其微弧氧化膜层性能较优的电源模式。方法在三种不同电源模式(交流电源、单极性脉冲电源和双极性脉冲电源)的条件下,应用微弧氧化(MAO)技术在ADC12高硅铝合金表面制备了陶瓷膜层,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验机等手段表征ADC12铝合金微弧氧化膜层的显微组织与性能。结果三种电源模式下微弧氧化膜层中都存在α-Al_2O_3、γ-Al_2O_3和Al9Si等物相;双脉冲模式下制备的微弧氧化膜层的致密性最好,厚度为15μm,硬度达到719 HV,摩擦系数为1.2左右,膜层与基体开始脱落的载荷为25.8 N。交流模式下制备的微弧氧化膜层膜厚较低,厚度为9μm,硬度达到698 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为19.5 N。单极性模式下制备的微弧氧化膜层厚度为17μm,但硬度为706 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为13.09 N。结论通过三种电源模式的比较,ADC12高硅铝合金在双极性脉冲电源模式下制得膜层的综合性能较好。  相似文献   

5.
铂改性铝化物涂层的高温防护性能研究   总被引:2,自引:1,他引:1  
目的研究1100℃下铂改性铝化物(Pt-Al)涂层在空气中的高温氧化行为。方法采用化学气相沉积(CVD)方法在单晶高温合金基体上制备铂改性铝化物(Pt-Al)涂层,采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等方法分析Pt-Al涂层在高温氧化过程中相结构、显微组织和成分的演变规律。结果经1100℃氧化250 h后,Al涂层及Pt-Al涂层的氧化动力学曲线符合抛物线演变规律,Pt-Al涂层的涂覆对基体合金的抗高温氧化性能的提高要优于Al涂层;经过150 h氧化后涂层出现了氧化膜剥落现象,同时涂层内部也出现了"地道"现象。结论 Pt-Al涂层对基体高温抗氧化性能有积极效果。  相似文献   

6.
目的针对装备向高温高速发展的需求,开展NiCr-Cr_3C_2、CoMoCr及NiCr Al Y涂层的高温摩擦磨损性能对比研究。方法针对上述三种涂层,通过超级爆炸喷涂工艺进行涂层制备,并测试涂层孔隙率、显微硬度、结合强度等基本性能,开展650℃/260 h的抗氧化试验和400、650℃的销盘式摩擦磨损试验,对比涂层的各项性能和在高温条件下的氧化质量增量、摩擦系数、磨损质量损失。结果抗氧化试验后,NiCr-Cr_3C_2、CoMoCrSi及NiCrAlY涂层氧化增重0.18、0.1、0.005 mg/(cm~2·h)。650℃时,摩擦系数分别为0.5、1.0、0.6。结论超级爆炸喷涂工艺制备的涂层组织、结合强度均优于等离子喷涂等常规喷涂工艺。高温下的氧化产物Co_3O_4与Cr_2O_3对高温摩擦系数有不同的影响。NiCr-75Cr_3C_2和NiCrAlY涂层在400、650℃可作为与SG37A材料的对磨副材料。  相似文献   

7.
目的提高材料的高温抗氧化腐蚀性能。方法采用气相渗铝方法在K417镍基高温合金表面制备铝化物涂层,通过光学显微镜、扫描电子显微镜(SEM)和能谱(EDS)分析渗铝层厚度、显微组织形貌和各元素在渗层中的分布,分析温度和时间对镍基高温合金渗铝层的形成影响规律。结果气相渗铝方法制备的渗铝层组织为典型的外扩散型组织即外层是单一的β-NiAl相,内层是含富Cr析出相的扩散层,扩散层的细小析出相对Al元素的扩散起到阻碍作用。结论随着渗铝温度的提高和渗铝时间的延长,渗层厚度逐渐增加,且渗铝温度对渗层厚度的影响远高于渗铝时间对渗层深度的影响。渗铝温度临界值为980℃,低于该温度时厚度增长不显著,高于该温度时厚度对渗铝温度和时间的敏感性增加。此外,渗铝温度越高,渗铝层组织中形成孔洞的倾向越大。  相似文献   

8.
目的提高热障涂层抗氧化性能,并减小二次反应区的形成。方法采用真空电弧离子镀技术在二代单晶高温合金DD32表面制备NiCoCrAlYHf(HY5)金属粘结层,分别在870℃及1000℃下进行真空扩散处理,利用电子束物理气相沉积(EB-PVD)技术制备氧化钇部分稳定氧化锆(YSZ)陶瓷层。采用扫描电子显微镜(SEM)、电子探针(EPMA)以及能谱(EDS)等测试方法,研究高温循环氧化过程中热障涂层的微观形貌、成分及扩散机制,同时计算了1、125 h氧化时间下Al元素互扩散系数。结果经过1000℃热循环、1000℃热处理的涂层氧化质量增量的绝对值较小,氧化速率常数为7.21×10-4,抗循环氧化性能较好。1100℃热处理试样,从涂层表面到基体方向Ni、Al、Cr等元素分布都比较均匀,在涂层与基体界面处,元素含量变化较为平滑。870℃热处理试样,Ni等元素质量分数分布不均,在涂层与基体界面处元素含量陡然变化,元素均质化程度低。Al元素扩散系数随着浓度的增加而增大,随着氧化时间的延长,粘结层与高温合金之间的元素扩散程度加剧,Al元素扩散系数减小。经过125h循环氧化,粘结层/基体界面出现互扩散区,互扩散区局部区域富Cr,Al含量低。循环氧化250 h后,热障涂层试样扩散区下方有拓扑密堆相TCP析出,形成二次反应区SRZ。真空扩散温度为870℃的试样,二次反应区更加明显。结论金属粘结层在1000℃下进行真空热处理可以有效提高涂层的抗氧化性能。涂层内部元素均质化程度高,Al元素扩散速率慢。同时,扩散区宽度较小,二次反应区不明显。  相似文献   

9.
轻质Cf/SiOC复合材料表面抗氧化涂层烧蚀性能的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的提高轻质碳纤维增强SiOC(C_f/SiOC)多孔陶瓷复合材料的抗烧蚀性能。方法用TaSi_2、MoSi_2为高温抗氧化组分,SiB_6为烧结助剂,硼硅酸玻璃为粘结剂,采用浆料法在C_f/SiOC复合材料表面制备多层梯度化抗氧化涂层。用氧乙炔考核带涂层复合材料的抗氧化及抗烧蚀性能,并通过扫描电子显微镜对烧蚀后的形貌进行分析。结果采用硼硅酸玻璃能够在较低的温度下获得表面致密的涂层,有效地提升涂层的阻氧能力,同时能够降低涂层与基体材料之间的热失配。通过浆料法能够获得梯度化的抗氧化涂层,即涂层由靠近基体部分的多孔层逐渐过渡至最外层的致密层。在氧乙炔考核烧蚀实验下,涂层表现出优良的抗烧蚀性能,并且随着表面烧蚀温度的不同,表现出不同的烧蚀行为。在1660℃下烧蚀后,线烧蚀率及质量烧蚀率分别为0.03μm/s,2.96×10-8g/(mm2·s),随着烧蚀温度增加至1760℃,线烧蚀率及质量烧蚀率增加至0.06μm/s,1.03×10-7g/(mm2·s)。带涂层的复合材料烧蚀后,涂层表面没有裂纹,但都出现了大量的孔洞,其主要原因是硼硅酸玻璃的挥发,基体材料并没有发生明显的氧化,涂层表现出优良的抗氧化、阻氧能力。结论硼硅酸玻璃的引入能够在较低的温度下获得表面致密的涂层,提升涂层的阻氧能力。制备的多组分抗氧化烧蚀涂层,可以有效地提高C_f/SiOC复合材料的抗烧蚀能力。  相似文献   

10.
目的 采用化学复合镀技术对微弧氧化进行封孔,进而得到抗烧蚀性能优良的Al2O3/Ni-P-SiC复合涂层。方法 通过采用扫描电镜(SEM)、光学金相显微镜(OM)、显微硬度仪(Microhardness Tester)、X射线衍射仪(XRD)、氧–乙炔烧蚀试验(Oxy-Acetylene Ablation Test)等方法,对复合涂层的表面形貌、截面形貌、厚度、显微硬度、物相和抗烧蚀性能等进行分析。结果 陶瓷层原始表面完全被化学镀层覆盖,所制得的复合涂层厚度均匀,化学镀层与陶瓷层紧密嵌合。镀液中的SiC浓度对镀覆的速度、镀层中SiC粒子的共沉积量有着较大的影响。当粒子质量浓度为16~20 g/L时,颗粒的共沉积量较大。化学复合镀60 min可以得到厚度20 μm左右的Ni-P-SiC镀层,SiC颗粒分布均匀。当镀液中SiC质量浓度为16 g/L时,镀层具有最高的硬度。对比未处理、仅微弧氧化和Al2O3/Ni-P-SiC复合涂层试样,Al2O3/Ni-P-SiC复合涂层试样具有最佳的抗烧蚀性能。结论 Al2O3/Ni-P-SiC复合涂层均匀、致密,具有良好的抗烧蚀。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号