首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
介绍了粮食筒仓粉尘爆炸的条件及爆炸的主要地点,提出了从设计,管理等方面采取的主要安全措施。  相似文献   

2.
建立的粉尘在巷道中的传递方程是一个二维平流扩散输运方程。在巷道顶底板为吸收壁的条件下,导出了粉尘浓度分布函数。传统的工业沉降室沉降效率公式(横向混合模型)只是论文所列方程的一个特例。降低紊流强度和减小紊流扩散系数和纵向弥散系数均可提高沉降效率  相似文献   

3.
为探究在实际生产中采用的大型筒仓内烟草粉尘的爆炸及其泄爆过程,基于大规模数值仿真FLACS软件的粉尘爆炸模块,通过改变初始浓度、点火位置、等比例变化筒仓容积,系统对比研究了泄放火焰的传播范围以及爆炸超压的演化规律。模拟结果表明,筒仓内粉尘浓度、点火位置、筒仓容积的变化均对爆炸过程有影响。水平泄压时,在500~1 000 g/m~3质量浓度范围内,筒仓内粉尘质量浓度越大,爆炸超压越大,火焰传播距离越远;点火位置离泄压口越远,爆炸超压越大,火焰传播距离越远;筒仓容积越大,爆炸超压越大,火焰传播距离越远。  相似文献   

4.
5.
粉尘浓度传感器的研制和应用   总被引:13,自引:0,他引:13  
介绍了粉尘浓度传感器的原理和结构,以及实验室实验和在淮南矿业集团谢桥煤矿的试验情况,研制的粉尘浓度传感器可以与KJ66等安全监控系统联网使用,测量误差小于15%.  相似文献   

6.
7.
通过对刘冲矿大量测试数据的解析,论证了矿山各工人群呼吸性粉尘浓度对数值遵从正态分布规律,并在此基础上提出了工人群呼吸性粉尘浓度测定值的采用与统计应遵循的原则和方法,对正确推行呼吸性粉尘监测新技术具有重要意义。  相似文献   

8.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   

9.
为给煤矿井下采煤工作面上粉尘浓度传感器的安放位置提供理论依据,建立了回采工作面巷道几何模型,根据气体、尘粒运动方程和欧拉-拉格朗日方法中的离散相模型,采用Fluent软件仿真井下采煤工作面及回风巷粉尘浓度的分布情况.仿真结果表明:粉尘在司机后方10-20m 处粉尘浓度达到最大,在司机30m后趋于稳定,粉尘传感器应放置在回风巷距综采工作面的距离小于或等于10m的位置.  相似文献   

10.
分析了山西铝厂氧化铝皮带廓技术改造以后粉尘浓度超标的原因,提出了降低粉尘浓度的对策。  相似文献   

11.
In this study, the dust distribution in a silo during axial filling was modelled using a commercial computational fluid dynamics (CFD) code. The work focused on the dust concentration distribution in the silo, for evaluating the likelihood of a dust explosion in the silo. The simulation was conducted using a combination of renormalized (RNG) k-epsilon and discrete phase models, with standard pressure interpolation and a second order upwind scheme. The predicted dust concentration distribution showed a good agreement with experimental data adopted from the literature. It was found that the dust concentration distribution was influenced by mean velocity and turbulence flow. The simulation results suggest that the cornstarch concentration inside the silo was always above the lower explosion limit (LEL), hence requiring a mitigating action or a control system to reduce the explosion risk.  相似文献   

12.
为了分析南京某地的气象要素和当地大气细菌浓度的分布及变化规律,探讨二之间的关系,本利用气象观测仪器和大气细菌采样仪器进行现场观测与测量,在大量气象观测数据和大气细菌采样结果基础上,分析了他们的变化规律。总体来看,南京大气细菌浓度不高,1天内气象要素及细菌浓度均呈周期变化,且二有一定的相关性。  相似文献   

13.
工业生产粉尘爆炸预防和缓解──近期研究与发展综述   总被引:1,自引:0,他引:1  
本文包括三个方面,即工业粉爆的基础研究、应用研究以及粉尘点人性和可爆性。基础研究包括粉尘云的形成和点火,火焰的传播以及粉煤产生的冲击波。工业预防措施包括惰化和消除点火源。缓解的方法包括隔爆、泄爆、部分惰化、抑爆和全封闭。基础研究和应用研究相互促进。计算机模拟模型可能成为非常有效的方法,也可用于专家系统。  相似文献   

14.
爆区附近岩土质点振动的测试与分析   总被引:7,自引:0,他引:7  
工程爆破中一般用质点振速作为衡量爆破震动强度的参数,并按质点振动公式来进行计算,但这样往往不能全面地反映爆破震动所产生的破坏作用。本在对台阶微差爆破震动测试的基础上,通过回归分析,得到了爆区附近不同位置的振速衰减规律及适用于砂质泥岩和砂质页岩等均质岩体的频率特性,同时提出了爆破震动在边坡坡缘处的振速放大效应以及频率的调制作用,并对产生的原因做出了相应的分析。  相似文献   

15.
郑州市大气环境中的NO2污染与灰色预测   总被引:6,自引:0,他引:6  
本文通过对郑州市大气环境中NO2的监测和分析,初步揭示了NO2变化的规律.同时,运用灰色关联度法,定量分析了影响郑州市NO2变化的因素.并利用灰色系统理论建立了该市NO 2产生量的GM(1,1)预测模型.结果表明,影响NO 2污染的主要因子是家庭用气普及率;NO2在大气中的浓度呈逐年下降的趋势,2002年预测值为0.043 mg/m3.  相似文献   

16.
The explosivity of dust clouds is greatly influenced by several parameters which depend on the operating conditions, such as the initial turbulence, temperature or ignition energy, but obviously also on the materials composition. In the peculiar case of a mixture of two combustible powders, the physical and chemical properties of both dusts have an impact on the cloud flammability and on its explosivity. Nevertheless, no satisfactory ‘mixing laws’ predicting the mixture behavior are currently available and the composition variable to be considered for such models greatly depend on the safety parameters which have to be determined: from volume ratios for some thermal exchanges and ignition phenomena, to surface proportions for some heterogeneous reactions and molar contents for chemical reactions. This study is mainly focused on graphite/magnesium mixtures as they are encountered during the decommissioning activities of UNGG reactors (Natural Uranium Graphite Gas). Due to the different nature and reactivity of both powders, these mixtures offer a wide range of interests. Firstly, the rate-limiting steps for the combustion of graphite are distinct from those of metals (oxygen diffusion or metal vaporization). Secondly, the flame can be thickened by the presence of radiation during metal combustion, whereas this phenomenon is negligible for pure graphite. Finally, the turbulence of the initial dust cloud is modified by the addition of a second powder. In order to assess the explosivity of graphite/magnesium clouds, a parametric study of the effects of storage humidity, particle size distribution, ignition energy, and initial turbulence has been carried out. In particular, it was clearly demonstrated that the turbulence significantly influences the explosion severity by speeding up the rate of heat release on the one hand and the oxygen diffusion through the boundary layer surrounding particles on the other hand. Moreover, it modifies the mean particle size and the spatial dust distribution in the test vessel, impacting the uniformity of the dust cloud. Thus, the present work demonstrates that the procedures developed for standard tests are not sufficient to assess the dust explosivity in industrial conditions and that an extensive parametric study is relevant to figure out the explosive behavior of solid/solid mixtures subjected to variations of operating conditions.  相似文献   

17.
Correlating turbulent burning velocity to turbulence intensity and basic flame parameters-like laminar burning velocity for dust air mixtures is not only a scientific challenge but also of practical importance for the modelling of dust flame propagation in industrial facilities and choice of adequate safety strategy. The open tube method has been implemented to measure laminar and turbulent burning velocities at laboratory scale for turbulence intensities in the range of a few m/s. Special care has been given to the experimental technique so that a direct access to the desired parameters was possible minimising interpretation difficulties. In particular, the flame is propagating freely, the flame velocity is directly accessible by visualisation and the turbulence intensity is measured at the flame front during flame propagation with special aerodynamic probes. In the present paper, those achievements are briefly recalled. In addition, a complete set of experiments for diametrically opposed dusts, starch and aluminium, has been performed and is presented hereafter. The experimental data, measured for potato dust air mixtures seem to be in accordance with the Bray Gülder model in the range of 1.5 m/s<u′<3.5 m/s. For a further confirmation, the measurement range has been extended to lower levels of turbulence of u′<1.5 m/s. This could be achieved by changing the mode of preparation of the dust air mixture. In former tests, the particles have been injected into the tube from a pressurised dust reservoir; for the lower turbulence range, the particles have been inserted into the tube from above by means of a sieve–riddler system, and the turbulence generated from the pressurised gas reservoir as before. For higher levels of turbulence, aluminium air mixtures have been investigated using the particle injection mode with pressurised dust reservoir. Due to high burning rates much higher flame speeds than for potato dusts of up to 23 m/s have been obtained.  相似文献   

18.
The 2007 edition of the National Fire Protection Association Standard 68 for Explosion Protection by Deflagration Venting has a new provision to account for the turbulence level in combustible dust or powder processing equipment. This paper explains the development of this new provision for increased deflagration vent area requirements in highly turbulent combustible dust/powder processing equipment. The development includes a review of initial turbulence level effects on vented explosion pressures, and a review of turbulence levels measured in ASTM E1226 and ISO 6184/1 explosion test procedures to determine Kst. A review of operating conditions in some representative spray dryer plant equipment suggests that most equipment of this type probably do not have high enough air flows to require increased explosion vent areas due to turbulence, but some types of equipment with high tangential entrance air flows may well need larger vent areas.  相似文献   

19.
On the transient flow in the 20-liter explosion sphere   总被引:1,自引:0,他引:1  
The turbulence level in the 20-l explosion sphere, equipped with the Perforated Dispersion Ring, was measured by means of laser Doppler anemometry. The spatial homogeneity of the turbulence was investigated by performing velocity measurements at various locations in the transient flow field. Directional isotropy was investigated by measuring two independent components of the instantaneous velocity. The transient turbulence level could be correlated by a decay law of the form
in which the exponent, n, assumes a constant value of 1.49±0.02 in the period between 60 and 200 ms after the start of the injection process. In this time interval the turbulence was also observed to be homogeneous and practically isotropic. The results of this investigation imply that the turbulence level in the 20-l explosion sphere at the prescribed ignition delay time of ms is not equal to the turbulence level in the 1 m3-vessel. Hence, these results call into question the widely held belief that the cube-root-law may be used to predict the severity of industrial dust explosions on the basis of dust explosion severities measured in laboratory test vessels.  相似文献   

20.
In this work, the effect of spatial distribution and values of the turbulent kinetic energy on the pressure-time history and then on the explosion parameters (deflagration index and maximum pressure) was quantified in both the standard vessels (20 L and 1 m3).The turbulent kinetic energy maps were computed in both 20 L and 1 m3 vessels by means of CFD simulations with validated models. Starting from these maps, the turbulent flame propagation of cornstarch was calculated, by means of the software CHEMKIN. Then, the pressure-time history was evaluated and from this, the explosion parameters.Calculations were performed for three cases: not uniform turbulence level as computed from CFD simulations, uniform turbulence level and equal to the maximum value, uniform profile and equal to the minimum value. It was found that the cornstarch in the 20 L vessel get variable classes (St-1, St-2, St-3) with respect to the 1 m3 (St-1). However, simulations performed on increasing the ignition delay time, shown that the same results can be attained only using 260 ms as ignition delay time in the 20 L vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号