共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Variations of metal distribution in sewage sludge composting 总被引:4,自引:0,他引:4
In the study, the variations of heavy metal distributions (of Cu, Mn, Pb, and Zn) during the sewage sludge composting process were investigated by sequential extraction procedures. The total content of Cu and Zn in the composted mixture increased after the composting process. Mn and Zn were mainly found in mobile fractions (exchangeable fraction (F1), carbonate fraction (F2), and Fe/Mn oxide fraction (F3)). Cu and Pb were strongly associated with the stable fractions (organic matter/sulfides fraction (F4) and residual fraction (F5)). These five metal fractions were used to calculate the metal mobility (bioavailability) in the sewage sludge and composted mixture. The mobility (bioavailability) of Mn, Pb, and Zn (but not Cu) increased during the composting process. The metal mobility in the composted mixture ranked in the following order: Mn>Zn>Pb>Cu. 相似文献
3.
《Waste management & research》1984,2(4):339-345
Various sludge composting methods used in France are described and evaluated in terms of the daily capacity and other factors. Simple windrows with mechanical turning, aerated static piles, BAV aerated reactors and Siloda mechanically turned and aerated chambers are described. Capacities range from 0.5 to more than 50 dry tons of sludge per day. 相似文献
4.
Jun Zhang Ding Gao Tong-Bin Chen Guo-Di Zheng Jun Chen Chuang Ma Song-Lin Guo Wei Du 《Waste management (New York, N.Y.)》2010,30(10):1931-1938
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k20 (the first-order rate constant at 20 °C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k20, k20s (first-order rate coefficient of slow fraction of BVS at 20 °C) of the sewage sludge were estimated as 0.082 and 0.015 d?1, respectively. 相似文献
5.
Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite 总被引:1,自引:0,他引:1
The main limiting factor, in order to use compost in agriculture, is the total concentration of heavy metals. Natural zeolites, such as clinoptilolite, have the ability to take up and remove those metals by utilizing ion exchange. However, it is important to know about the fractionation of the heavy metals during the thermophilic phase and the maturation phase. The purpose of this work was to determine the changes in the fraction of heavy metals in sewage sludge compost in which clinoptilolite is used as a bulking agent to remove metals. The final result indicates that a significant (p < 0.05) percentage of the metals, which is not removed by the zeolite, is associated with the residual fraction which is considered as an inert form. 相似文献
6.
Chen J Chen TB Gao D Lei M Zheng GD Liu HT Guo SL Cai L 《Waste management (New York, N.Y.)》2011,31(1):65-70
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O2 was the main reason for H2S production. Maintaining the O2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. 相似文献
7.
8.
Chlortetracycline (CTC) is one of the most important pharmaceuticals occurring in the environment. An increase of its application as feed supplement for livestock and poultry in the world leads to a substantial CTC contamination of manures, because most of the CTC is excreted to manure. The simulation experiment of aerobic composting was adopted to investigate CTC depletion in aged and spiked manure composting, and to address the extent of CTC depletion during composting. The results showed that the extractable CTC initial concentration was markedly different between the different manures, with 94.71mgkg(-1) in broiler manure and 879.6mgkg(-1) in hog manure. The concentration of extractable CTC decreased rapidly at the initial stage of composting, and subsequently declined slowly during aged and spiked manure composting. At the end of composting, more than 90% of CTC in the manure composting process (42 days) was depleted, except for hog manure composting with a removal of only 27%. The CTC half-lives were 11.0 days in broiler manure, 86.6 days in hog manure, 12.2 days in layer-hen manure (150.3mgkg(-1) CTC), 12.0 days in layer-hen manure (100.0mgkg(-1) CTC) and 4.39 days in layer-hen manure (53.10mgkg(-1) CTC), all according to the first order kinetics. The significance of experimental parameters in CTC depletion was assessed by the Pearson correlation approach. Microbial degradation of CTC was not effective from manure composting. CTC depletion was in good correlation with total organic carbon, total nitrogen, total phosphorus, C/N, N/P and total heavy metals. 相似文献
9.
Yiqun Chen Fang Yu Shengwen Liang Zongping Wang Zizheng Liu Ya Xiong 《Waste management (New York, N.Y.)》2014,34(11):2014-2021
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. 相似文献
10.
This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n = 117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM – dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols – except NP – BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). 相似文献
11.
Changes in organic matter composition during composting of two digested sewage sludges 总被引:1,自引:0,他引:1
Hernández T Masciandaro G Moreno JI García C 《Waste management (New York, N.Y.)》2006,26(12):1370-1376
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process. 相似文献
12.
Rundong Li Jing Yin Weiyun Wang Yanlong Li Ziheng Zhang 《Waste management (New York, N.Y.)》2014,34(7):1211-1216
Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by 31P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at ?50 °C and a thermoelectric thermostat drying box at 105 °C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorous that can be directly absorbed by plants. 31P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P. 相似文献
13.
Seok-Pyo Hong Jong-In Dong Sang-Ku Yeo In-Hee Park Moon-Sik Chung Doo-Il Kim Young-Kwon Park 《Journal of Material Cycles and Waste Management》2011,13(3):186-189
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because
energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium
oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification
reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor
was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than
6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction
temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures
of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid
products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were
considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts,
dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight
of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered
to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually
showed reduced tar generation. 相似文献
14.
Co-digestion of grease trap sludge and sewage sludge 总被引:3,自引:0,他引:3
Davidsson A Lövstedt C Jansen Jl Gruvberger C Aspegren H 《Waste management (New York, N.Y.)》2008,28(6):986-992
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion. 相似文献
15.
Francisco J. Fernández Virginia Sánchez-Arias Lourdes Rodríguez José Villaseñor 《Waste management (New York, N.Y.)》2010,30(10):1948-1956
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. 相似文献
16.
Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash 总被引:1,自引:0,他引:1
Nowak B Perutka L Aschenbrenner P Kraus P Rechberger H Winter F 《Waste management (New York, N.Y.)》2011,31(6):1285-1291
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit. 相似文献
17.
Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure 总被引:3,自引:0,他引:3
Miaomiao H Wenhong L Xinqiang L Donglei W Guangming T 《Waste management (New York, N.Y.)》2009,29(2):590-597
The concentration and bioavailability of heavy metals in composted organic wastes have negative environmental impacts following land application. Aerobic composting procedures were conducted to investigate the influences of selected parameters on heavy metal speciation and phytotoxicity. Results showed that both of sewage sludge (SSC) and swine manure (SMC) composting systems decreased the pH, the content of organic matter (OM) and dissolved organic carbon (DOC), and total amounts of Cu, Zn and Pb. Sequential extraction showed that readily extractible fractions of exchangeable and carbonate in Cu and Zn increased during SSC composting but decreased during SMC composting, thus their bioavailability factors (BF) enhanced in SSC but declined in SMC. The fraction of reducible iron and manganese (FeMnOX) of Cu and Zn in SSC and FeMnOX-Cu in SMC decreased, but FeMnOX-Zn in SMC gradually increased in the process of compost. In contrast, the changes of Pb distributions were similar in two organic wastes. Pb was preferentially bound to the residual fraction and its BF decreased. The evolution of heavy metal distributions and BF depended on not only total metal concentrations but also the other properties, such as pH, decomposition of OM and decline of DOC. The germination rate (RSG), root growth (RRG) and germination index (GI) of pakchoi (Brassica Chinensis L.) increased during the composting process. Linear regression analysis demonstrated that GI, which could represent phytotoxic behavior to the plants, could be poorly predicted by BF or total amount of metals, i.e., BF-Zn, T-Cu. However, the inclusion of other physicochemical parameters (pH, OM and DOC) could enhance the linear regression significances (R). 相似文献
18.
The United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100bar under anoxic and/or reducing conditions. The purpose of this study was to examine the HT treatment of municipal sewage sludge and infectious fecal microbial cultures with respect to waste volume reduction, biological sterilization, and the generation of usable hydrocarbon product mixtures. These endpoints from HT treatment also were compared to those from pyrolysis. HT at 400 degrees C/150bar transformed sewage sludge solids into complex gas phase (4%) and liquid (6%) hydrocarbon mixtures (approximately 11% combined yield), along with similar amounts (5%) of solid residues. HT products in the aqueous phase (e.g., alcohols) were present but not analysed. Viable mixed fecal cultures (10(9) colony forming units/mL) were completely sterilized by HT treatment, and a hydrocarbon mixture also was generated from the cells, but it was markedly different from that resulting from HT of the sludge. The hydrocarbon assemblage generated from the sludge included n-hydrocarbons (C(9)-C(20)) and alkyl substituted benzenes, phenols, and related compound series of higher mass (e.g., indanes, naphthalenes). Light aromatic parent compounds were significantly less abundant than their substituted C(1)-C(5) alkyl series and there was a paucity of N-, O- and S-heterocycles and polycyclic systems with more than three fused rings. This was different from the products of pyrolysis which were dominated by a relatively simple mixture of linear and branched hydrocarbons and their oxidized homologues (e.g., aldehydes). 相似文献
19.
Mechanical properties of dewatered sewage sludge 总被引:1,自引:0,他引:1
O'Kelly BC 《Waste management (New York, N.Y.)》2005,25(1):47-52
The mechanical properties of dewatered, anaerobically digested sewage sludge were determined from soil laboratory tests. The sludge material is largely composed of organic clay sized-particles, a sizable fraction of which is in an active state of biological digestion which can continue over many years under field conditions. Moderately digested sludge material was found to have a typical specific gravity of solids value of 1.55, and loss on ignition (LOI) value of 70% dry mass. Strongly digested sludge, produced by digesting the liquid sludge further at 35 degrees C in the laboratory, was found to have a lower LOI value of 55% dry mass, and a higher specific gravity of solids value of about 1.72. The maximum dry density of 0.56 tonne/m3 for the dried sludge material was produced using standard Proctor compaction at roughly 85% moisture content (54% solids content). Air-dried, compacted sludge material was tested in quick-undrained triaxial compression and vane shear. Undrained shear strength-moisture content plots are presented. Shear strength values measured in triaxial compression and vane shear were consistent. The effective angle of shearing resistance (phi') was determined from consolidated-undrained, triaxial compression tests on pasteurized, normally consolidated samples of the sludge material. The mechanical properties of the sludge material changed with the level of sludge digestion. The phi' value increased from 32 degrees for moderately digested sludge, to 37 degrees for strongly digested sludge. The effective cohesion of the sludge material remained zero throughout. The shrinkage, swelling and adhesion properties of the sludge material were also studied. Significant shrinkage occurred as the compacted material dried. The sludge material lost its adhesion below about 95% moisture content (51% solids content). Re-hydration of the dry material caused the bulk volume to double. 相似文献
20.
The re-use of sewage sludge without any treatment as primary material-mixed with clays-in order to obtain structural ceramics for buildings has been successfully improved. In the Ecobrick project, the firing of a mixture of specific percentages of three components (clays, sludges and forest debris) resulted in a lighter and more thermal and acoustic insulating brick, compared with conventional clay-bricks. Volatile organic compounds (VOC) emission from the manufacturing of ceramics is the most important aspect to control. In the Ecobrick project VOC emissions were monitored by using a bench-scale furnace. The study was conducted using an EPA recommended sampling train and portable sampling tubes that were thermally desorbed and analyzed by gas chromatography/mass spectrometry. Drying of raw sewage-sludge and firing processes were considered separately. In this paper, we present VOC emissions coming from the firing step of the Ecobrick production. 相似文献