首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adav SS  Chen MY  Lee DJ  Ren NQ 《Chemosphere》2007,67(8):1566-1572
Aerobic granules effectively degrade phenol at high concentrations from which no Acinetobacter species, that can effectively degrade high concentrations of phenol, have ever been isolated from aerobic granules. The phenol-fed aerobic granule studied was made by merging several smaller granules, each with a core of proteins and nucleic acids surrounded by an outer layer enriched with polysaccharides. In the present study, a strain of Acinetobacter sp. was isolated from the phenol-fed aerobic granules and was identified using DNA sequencing. The fluorescent in situ hybridisation combined with the confocal laser scanning microscope test revealed that the isolated Acinetobacter strain was mainly distributed in the core regime of granule. Batch tests revealed that the suspended Acinetobacter strain could effectively degrade phenol at an initial phenol concentration of up to 1000 mg l(-1) with no cell growth taking place at a phenol concentration of 1500 mg l(-1). The Haldane model describes the inhibitory kinetics of the phenol degradation data. The suspended Acinetobacter strain had a propensity to attach to the surface of sterilized polyurethane foam at a concentration of 12.3mg dry cells mg(-1) dry foam. The immobilized cells could not only degrade phenol at a rate similar to the suspended cells at phenol concentration of 500 mg l(-1), but also effectively degraded phenol at 1500 mg l(-1). The polysaccharides outer layer protected the Acinetobacter strain from phenol's toxicity; while the strain may also contribute to bioaggregation of the granule for its high propensity to attach to solid surface.  相似文献   

2.
The bioconcentration and elimination of racemic benalaxyl (BX) in trout liver microsomes and in juvenile rainbow trout (Oncorhynchus mykiss) were investigated to determine whether the fish can bioconcentrate and degrade this fungicide enantioselectively. Both enantiomers of BX were extracted with organic solvents and evaluated using high-performance liquid chromatography. In the microsomes, BX degradation followed first-order kinetics, and the S?(+) enantiomer of BX was eliminated twice as rapidly as the R?(?) enantiomer, resulting in residues enriched for R?(?)?BX. In vivo experiment, chiral analysis showed an obvious selective bioconcentration of BX based on statistically altered enantiomer fractions (EFs) in the fish compared with the values in the water. The R?(?)?BX was initially preferentially bioconcentrated by rainbow trout and then dissipated more slowly than its antipode. The mean half-lives for individual enantiomers were calculated as 31.6 h for R?(?)?BX and 20.3 h for the S?(+)?form. The results of the study showed that the degradation of BX enantiomers was stereoselective in rainbow trout.  相似文献   

3.
Environmental Science and Pollution Research - Indole, as a typical N-heterocyclic aromatic pollutant, poses risks to living things; however, indole-biotransformation mechanisms remain...  相似文献   

4.
A subsurface microbial community was isolated from a polluted site of Suquía River (Córdoba-Argentina), acclimated during 15 days in aerobic conditions using 1,2-dichlorobenzene (1,2-DCB) as the sole carbon source. From this acclimated community, we isolated and identified by 16S rDNA analysis a strain of Acidovorax avenae, which was able to perform the complete biodegradation of 1,2-DCB in two days affording stoichiometric amounts of chloride. This pure strain was also tested for biodegradation of chlorobenzene (CB); 1,3-DCB and 1,4-DCB, giving similar results to the experiments using 1,2-DCB. The aromatic-ring-hydroxylating dioxygenase (ARHDO) alpha-subunit gene core, encoding the catalytic site of the large subunit of chlorobenzene dioxygenase, was detected by PCR amplification and confirmed by DNA sequencing. These results suggest that the isolated strain of A. avenae could use a catabolic pathway, via ARHDO system, leading to the formation of chlorocatecols during the first steps of biodegradation, with further chloride release and subsequent paths that showed complete substrate consumption.  相似文献   

5.
A highly effective acetochlor-degrading bacterial strain (D-12) was isolated from the soil of a pesticide factory. The strain was identified as Achromobacter sp. based on its 16S rRNA gene sequence. The strain D-12 optimally degrades acetochlor at a pH of 7.0 and a temperature of 30°C in a mineral salts medium (MSM). Approximately 95% of acetochlor was degraded by the stain treated at a concentration of 10 mg L?1 after 5 days of incubation. A chiral high performance liquid chromatography (HPLC) system was used to study the enantioselectivity during the process. However, no obvious enantioselective biodegradation was observed. The primary biodegradation acetochlor products were identified by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the strain D-12 could be applied in the bioremediation of an acetochlor-polluted environment.  相似文献   

6.
The production and properties of a rhamnolipid-type biosurfactant, synthesized by the Pseudomonas aeruginosa LBM10 strain, isolated from a southern coastal zone in Brazil, were investigated. The assays were conducted in a rotary shaker at 30 degrees C and 180 rpm for a period of 96 h. Soybean oil and sodium nitrate were the best sources of carbon and nitrogen, respectively. A nitrogen-limiting condition (C/N ratio of 100) was favorable to biosurfactant production. The formation of stable emulsions was better in saline concentrations below 0.5%, pH values in the range from 6 to 9 and temperatures in the range from 35 to 40 degrees C, maintaining about 80% of its original activity for salinity up to 3% and 120 min of exposure at 100 degrees C. The biosurfactant may be produced with this microorganism using renewable substrates that are readily available, reaching values of 1.42 g l(-1) measured as rhamnose. This biosurfactant has interesting and useful properties for many industrial applications.  相似文献   

7.
The increasing usage and the persistence of polyester polyurethane (PU) generate significant sources of environmental pollution. The effective and environmental friendly bioremediation techniques for this refractory waste are in high demand. In this study, three novel PU degrading bacteria were isolated from farm soils and activated sludge. Based upon 16S ribosomal RNA gene sequence blast, their identities were determined. Particularly robust activity was observed in Pseudomonas putida; it spent 4 days to degrade 92 % of Impranil DLNTM for supporting its growth. The optimum temperature and pH for DLN removal by P. putida were 25 °C and 8.4, respectively. The degradation and transformation of DLN investigated by Fourier transformed infrared spectroscopy show the decrease in ester functional group and the emergence of amide group. The polyurethanolytic activities were both presented in the extracellular fraction and in the cytosol. Esterase activity was detected in the cell lysate. A 45-kDa protein bearing polyurethanolytic activity was also detected in the extracellular medium. This study presented high PU degrading activity of P. putida and demonstrated its responsible enzymes during the PU degradation process, which could be applied in the bioremediation and management of plastic wastes.  相似文献   

8.
Zhang C  Zeng G  Yuan L  Yu J  Li J  Huang G  Xi B  Liu H 《Chemosphere》2007,68(1):181-190
A novel bacterium designated strain B-16 was isolated from the compost leachate of the municipal solid waste (MSW) in a laboratory reactor. This strain was identified as a gram-negative bacterium, Achromobacter xylosoxidans that could grow on bisphenol A (BPA, a representative endocrine disruptor) as a sole carbon source under aerobic condition. BPA-degrading characteristics of strain B-16 were investigated in liquid cultures. The results show that BPA degradation was influenced by several factors (e.g. inoculum size, substrate concentration, temperature and pH, etc). The half-lives, optimum temperature and pH were found to be 0.58-3.1d, 35 degrees C and 7.0, respectively. BPA-degrading activity and cell growth were inhibited at high substrate concentration. Metabolic intermediates detected during the degradation process were identified as p-hydroxybenzaldehyde, p-hydroxybenzoic acid and p-hydroquinone, respectively. Metabolic pathway of BPA degradation was proposed in this study.  相似文献   

9.
An effective dichloromethane (DCM) utilizer Methylobacterium rhodesianum H13 was isolated from activated sludge. A response surface methodology was conducted, and the optimal conditions were found to be 4.5 g/L Na2HPO4·12H2O, 0.5 g/L (NH4)2SO4, an initial pH of 7.55, and a temperature of 33.7 °C. The specific growth rate of 0.25 h?1 on 10 mM DCM was achieved, demonstrating that M. rhodesianum H13 was superior to the other microorganisms in previous investigations of DCM utilization. DCM mineralization paralleled the production of cells, CO2, and water-soluble metabolites, as well as the release of Cl?, whereas the carbon distribution and Cl? yield varied with DCM concentrations. The facts that complete degradation only occurred with DCM concentrations below 15 mM and repetitive degradation of 5 mM DCM could proceed for only three cycles were ascribed to pH decrease (from 7.55 to 3.02) though a buffer system was employed.  相似文献   

10.
In this study, biotransformation rate constants are estimated for a large set of organic compounds. Biotransformation (km) is considered part of the total elimination, further consisting of physico-chemical elimination to water (kw), depuration by feces (kf) and growth dilution (gamma). Existing models are used to estimate kw and kf, and gamma. The difference between measured elimination rate constants and the sum of predicted elimination rate constants for water, feces and growth indicates the ration of biotransformation in the total elimination. In all examined animal classes, polycyclic aromatic hydrocarbons seem to be metabolized at an intermediate rate. Because of the relative low hydrophobicity of some of the studied compounds, their physico-chemical elimination rate constant is relatively high, and the relative contribution of metabolism to total elimination of these compounds is therefore relatively low. Fish seem to be capable of metabolizing chlorodibenzo-p-dioxins and -furans, DDT, chloroanilines and phenol.  相似文献   

11.
Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg−1 dry weight of arsenic when exposed to 40 μM for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa.  相似文献   

12.
Abstract

This work establishes methods of reducing the amount of methane produced from the anaerobic treatment of piggery wastewater by either reducing the storage time before solid/liquid separation or inhibiting the activity of methanogens in anaerobic wastewater treatment system. Experimental results showed these two methods can be adopted effectively to reduce methane production resulting from anaerobic piggery wastewater treatment. First, the wastewater must be processed using solid/liquid separation immediately after washing pig houses. This process can reduce by 62% the biogas production and indirectly decrease the methane production from the anaerobic wastewater treatment reactor. Second, adding 10 mg L?1 bromochloromethane (BCM) daily into the anaerobic wastewater treatment reactor can significantly reduce the amount of biogas and methane produced during the anaerobic fermentation process. Furthermore, biogas production can be completely inhibited after 4 days. Adding BCM (≤10 mg L?1) to wastewater only slightly affected the efficiency of the anaerobic wastewater treatment process. Results in this study can provide the basis for further research on reduction of the amount of methane produced from anaerobic wastewater treatments.  相似文献   

13.
The present work evaluates the possible bioconversion of wet olive cake by low-cost biostabilization (vermicomposting process). Wet olive cake fresh (WOC), precomposted (WOCP), or mixed with biosolids (WOCB), were vermicomposted for 6 months to obtain organic amendments for agricultural and remediation purposes. The results showed initial differences depending on previous treatment. WOCP was initially more stable, presented a low C:N ratio, and showed more dehydrogenase and urease activity. By contrast, there was no dehydrogenase activity initially in WOC and WOCB, due to the presence of some different types of polyphenols. Finally, the end product showed relatively higher amounts of total nitrogen and humic acid and met the standard of quality for composts and vermicomposts for use both in conventional and organic agriculture and soil-restoration programs.  相似文献   

14.
15.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

16.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L(-1) of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine.  相似文献   

17.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L?1 of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine.  相似文献   

18.
Ilori MO  Amobi CJ  Odocha AC 《Chemosphere》2005,61(7):985-992
An Aeromonas spp. was isolated from tropical estuarine water. The organism grew on crude oil and produced biosurfactant that could emulsify hydrocarbons. The peak growth and biosurfactant production was on the 8th day. The organism grew on a range of hydrocarbons that include crude oil and hexadecane while no growth was recorded on some hydrocarbons that include benzene. The biosurfactant produced by the organism emulsified a range of hydrocarbons with diesel (E24=65) as the best substrate and hexane (E24=22) as the poorest. After purification, the biosurfactant was found to contain about 38% carbohydrate and an unidentified lipid. No protein was present in the purified biosurfactant. Production of biosurfactant was highest in medium with glucose and lowest in the medium with diesel+acetate. Soybean was the best nitrogen source for biosurfactant production. The activity of the biosurfactant was enhanced optimally at NaCl concentration of 5%, pH of 8.0 and temperature of 40 degrees C. The biosurfactant retained 77% of its original activity after 120 min of exposure to heat at a temperature of 100 degrees C. Biosurfactant may be produced with this organism using non-hydrocarbon substrates such as glucose and soybean that are readily available and would not require extensive purification for use in food and pharmaceutical industries.  相似文献   

19.
20.
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号