首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
水质环境条件对恒流超滤过程的影响研究   总被引:2,自引:0,他引:2  
研究了用聚丙烯腈中空纤维超滤膜组件净化含腐殖酸类有机物模拟废水的恒流膜过程,考察了水中的Ca2+浓度、离子强度、pH值等水质环境条件对超滤膜过滤性能的影响。试验结果表明,增加水中Ca2+浓度,增大溶液离子强度,以及降低pH值均能增大跨膜压差的增加速率;增加水中Ca2+浓度和降低pH值的效果较明显。Ca2+、离子强度变化基本不影响有机污染物的去除率,而pH值的升高降低了膜对水中有机污染物的去除率。  相似文献   

2.
淀粉及改性淀粉的阻垢性能测试   总被引:1,自引:0,他引:1  
实验利用浓硫酸氧化淀粉制备了改性淀粉,其颜色为棕红色;然后在不同浓度、温度、Ca2+浓度、pH下,对淀粉及改性淀粉的阻垢性能进行了测试.结果发现,淀粉高效阻垢的最佳浓度为8 mg/L,最佳温度为70℃,在此最佳浓度、最佳温度下对应阻垢效率为23.3%;改性淀粉高效阻垢的最佳浓度为0.61 mg/L,最佳温度为80℃,在...  相似文献   

3.
无机离子对催化臭氧化降解水中痕量硝基苯效果的影响   总被引:5,自引:2,他引:3  
赵雷  马军  孙志忠 《环境科学》2006,27(5):924-929
考察了天然水体中常见的无机离子对单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷3种氧化工艺分解水中痕量硝基苯的影响.单独臭氧氧化和臭氧/改性蜂窝陶瓷对硝基苯的分解效率随着钙离子浓度的升高(0~4 mg·L-1)分别增加了5.0%和8.6%,在相同实验条件下,臭氧/蜂窝陶瓷对硝基苯的降解效率在钙离子浓度为0.5 mg·L-1时达到最大值;单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷在锰离子浓度增加(0~4 mg·L-1)的情况下对硝基苯的去除率分别增加了10.9%、11.6%和9.6%,随着重碳酸根离子浓度的增加(0~200 mg·L-1)分别降低了8.6%、11.5%和8.9%;硝酸根和硫酸根离子浓度对单独臭氧氧化降解水中硝基苯无明显影响,另2种氧化工艺对硝基苯的分解效率随着硝酸根和硫酸根离子浓度的增加而降低.  相似文献   

4.
臭氧氧化被广泛应用于水处理领域,然而臭氧氧化会造成溴酸盐的生成,同时会增加水中醛酮类物质,在后续消毒环节存在消毒副产物三氯乙醛(CH)升高的风险。文章采用亚硫酸氢钠(BS)活化高锰酸钾(PM)技术控制臭氧氧化副产物,考察了预氧化技术对溴酸盐和CH生成潜能的影响。同时为了探究能否在控制副产物的同时保障对污染物的去除,考察了预氧化技术对阿特拉津(ATR)的去除效果。结果表明,2 mg/L的PM或者2 mg/L PM+5 mg/L BS预处理使ATR去除率降低,而1 mg/L PM+5 mg/L BS预处理则强化了ATR的去除。1 mg/L的PM预氧化增加了溴酸盐和CH生成量,其他剂量影响较小。而随着PM剂量的增加,PM+BS对溴酸盐和CH生成潜能的控制效果加强。在1 mg/L的PM剂量下,PM+BS可以在保障ATR有效去除的同时控制溴酸盐和CH生成潜能,是有效控制臭氧氧化副产物的方法。  相似文献   

5.
水中本底成分对催化臭氧化分解微量硝基苯的影响   总被引:2,自引:2,他引:0  
孙志忠  赵雷  马军 《环境科学》2006,27(2):285-289
考察了水中本底成分对催化臭氧化分解水中微量硝基苯的影响规律.对比试验结果表明,单独臭氧氧化、臭氧/蜂窝陶瓷催化氧化和臭氧/改性蜂窝陶瓷催化氧化工艺在自来水中比蒸馏水中对硝基苯的去除率分别增加了4.90%、2.47%和5.12%.单独臭氧氧化对硝基苯的分解效率随着镁离子浓度的升高(0~8 mg.L-1)而增加了6.25%,在相同实验条件下,臭氧/蜂窝陶瓷催化氧化和臭氧/改性蜂窝陶瓷催化氧化对硝基苯的降解效率随着镁离子浓度的升高却降低了11.41%和17.64%;单独臭氧氧化、臭氧/蜂窝陶瓷催化氧化和臭氧/改性蜂窝陶瓷催化氧化在氯离子浓度增加(0~40 mg.L-1)的情况下对硝基苯的去除率分别下降了4.42%、9.38%和12.24%;低浓度的腐殖酸促进了硝基苯的降解,高浓度的腐殖酸抑制了硝基苯的降解.实验还研究了臭氧投加量和硝基苯初始浓度对硝基苯降解效率的影响.  相似文献   

6.
循环冷却水处理的新方法研究   总被引:2,自引:0,他引:2  
论述了纤维球过滤与臭氧氧化处理循环冷却水的组合方法。试验表明;纤维球过滤具有滤速高、去除效果显著、性能稳定和运行费用低等优点,并为臭氧处理创造了良好的条件,降低臭氧处理的难度、节省臭氧处理的用量和运行成本。而臭氢氧化则具有氧化、阻垢、缓蚀与抑菌等多种作用,从而能使冷却水处理工艺大为简化。  相似文献   

7.
赵雷  马军  刘正乾  孙志忠  侯艳君 《环境科学》2008,29(5):1233-1238
考察了有机物甲醛、甲醇、甲酸和邻苯二甲酸二丁酯对单独臭氧氧化和蜂窝陶瓷催化臭氧化工艺去除水中硝基苯降解效果的影响规律.单独臭氧氧化和蜂窝陶瓷催化臭氧化对硝基苯的去除率随着甲醛浓度的升高(0~12 mg·L-1)分别降低了11.6%和9.6%;2种工艺对硝基苯的去除率都随着甲醇浓度的增加(0~16mg·L-1,)先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为2 mg·L-1和4 mg·L-1时去除率达到最大值;随着甲酸浓度的增加(0~8 mg·L-1)去除率也都先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为0.5 mg·L-1和2 mg·L-1时去除率达到最大值;低浓度的甲醇和甲酸促进了硝基苯的降解,高浓度的甲醇和甲酸抑制了硝基苯的降解.单独臭氧氧化和蜂窝陶瓷催化臭氧化在邻苯二甲酸二丁酯浓度增加(0~10 mg·L-1)的情况下对硝基苯的去除率分别降低了19.7%和18.6%.  相似文献   

8.
水中腐殖酸的O_3氧化与其生物可降解性实验研究   总被引:4,自引:0,他引:4  
分析探讨了水中DBPs的重要先质———腐殖酸的臭氧化机理 ,采用O3氧化作为生物预处理 ,可以提高腐殖酸的生物降解能力。实验研究表明O3氧化 +生物流化床组合工艺下HA的UV- 2 50 和CODMn的去除率与单独生物处理相比 ,预臭氧化后水中有机物生物降解能力可提高30 %左右。  相似文献   

9.
蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究   总被引:4,自引:4,他引:0  
实验考察了HCO3-、CO32-、HPO42-、H2PO4-和叔丁醇等羟基自由基抑制剂存在条件下,单独臭氧氧化和臭氧/蜂窝陶瓷氧化对水中硝基苯降解效果的影响规律,初步推测了反应机理.结果表明,2种工艺对硝基苯的去除率都随着HCO3-浓度的增加(0~200 mg·L-1)先增高再降低,在浓度为50 mg·L-1时去除率达到最大值;单独臭氧氧化和臭氧/蜂窝陶瓷对硝基苯的去除率随着CO32-浓度的增加(0~20 mg·L-1)分别降低了16.57%和27.52%,随着HPO42-浓度的增加(0~12 mg·L-1)分别降低了13.61%和17.52%,随着H2PO4-浓度的增加(0~120 mg·L-1)分别降低了6.61%和12.52%,随着叔丁醇浓度的增加(0~10mg·L-1)硝基苯去除率降低了30.06%和46.09%.证明单独臭氧氧化和臭氧/蜂窝陶瓷氧化对硝基苯的降解遵循·OH氧化机理,叔丁醇更适合作为自由基抑制剂用来推断单独臭氧氧化和臭氧/蜂窝陶瓷氧化降解硝基苯的反应机理.单独臭氧氧化对硝基苯的去除率随着pH值的升高(3.02~10.96)而增大,臭氧/蜂窝陶瓷氧化对硝基苯的去除率在pH=9.23时达到最大值.  相似文献   

10.
在六十年代,我国科研界曾有过一股研究臭氧的热潮。当时大都从臭氧发生器的研制着手。20年来,臭氧的应用已日趋广泛。臭氧是仅次于氟的强氧化剂,其在水中很容易分解(O_3→O_2+O)放出原子氧,这种新生态的原子氧,有极强的氧化能力。它可以使环状结构的芳香烃氧化成直链烃,可以把大分子量的直链烯烃从双键部位断开,变成易于降解的小分子量的烃;它可以把生物降解性差的有机化合物氧化为生物降解性好的或简单的化合物,从而增进有机污染物的生物降解作用;臭氧在水中可以很快地杀灭包括炭疽杆菌芽胞  相似文献   

11.
臭氧253.65 nm波长处的吸收截面系数通过朗伯-比尔定律被普遍用于紫外吸收原理臭氧测量,是直接影响臭氧监测数据的基础参数.国际计量局重新测定并于2019年修订了臭氧253.65 nm处的吸收截面系数,拟从1.147×10-17 cm2/mol降至1.132 9×10-17 cm2/mol,将导致臭氧监测浓度系统性升高1.24%.为研究臭氧吸收截面系数变化对中国环境空气质量达标的影响,使用2018年中国国家环境空气监测网臭氧监测数据模拟了特征吸收截面变化后中国337个地级及以上城市的臭氧监测数据,并统计了特征吸收截面变化对全国以及重点城市群臭氧超标城市数量、臭氧污染天数和优良天数比例的影响.结果表明:臭氧吸收截面系数的变化将导致全国臭氧超标城市增加7个;全国以及"2+26"城市群、长三角城市群、珠三角城市群、汾渭平原城市群中各城市臭氧超标天数分别增加1.4、3.5、2.4、1.7和2.1 d,优良天数比例分别降低0.3%、0.9%、0.6%、0.4%和0.6%.研究显示,臭氧吸收截面系数变化将系统性影响全国以及重点地区环境空气质量达标工作,应予以重点关注.   相似文献   

12.
气相正己烷的光催化及臭氧/光催化降解动力学   总被引:5,自引:1,他引:4  
初步研究了气相中低浓度的正己烷在较大流量(5L/min~17L/min)臭氧/紫外(O3/UV),光催化(TiO2/UV)及臭氧/光催化(O3/TiO2/UV)3种方法的降解的动力学,考察了正己烷的初始浓度、流量、水蒸气浓度、臭氧投加量等因素的影响.研究表明:正己O3/TiO2/UV降解效率远高于O3/UV的降解效率,明显高于TiO2/UV降解效率;相对于初始浓度,正己烷的TiO2/UV及O3/TiO2/UV反应符合L-H模型,对于O3/UV过程用L-H模型不能得到较好的拟合;随着流量的增加正己烷在TiO2/UV与O3/TiO2/UV降解过程中的反应速率先增加后保持不变,但是在O3/UV过程中其反应速率变化不大;湿度对正己烷的降解有一定的影响;随着臭氧投加量的增加,正己烷O3/UV和O3/TiO2/UV的降解速率呈直线增加,在O3/UV过程中正己烷的反应速率增加更快.  相似文献   

13.
城市臭氧浓度分布特征   总被引:49,自引:9,他引:40  
近地面层臭氧(O3)研究是当今环境科学领域的前沿课题之一,随着汽车尾气排放NOx和碳氢化合物的增加,在日光照射等条件下导致低层大气中O3浓度明显增高,面临光化学烟雾污染的威胁,开展环境空气中O3监测与分析对防治大气污染有十分重要的意义.利用2003年6个月的臭氧(O3)自动连续监测数据,对山东大学校园内O3浓度的频率分布、日变化、月变化等特征进行分析.实验结果表明,O3小时平均浓度达到<环境空气质量标准>(GB3095-1996)二级标准的频率为96.88%;O3浓度呈明显的日变化,一般在下午浓度较高,上午和夜晚较低;O3浓度的最高值出现在6月份,这与辐射强烈,温度高有关;天气条件也影响O3浓度,一般晴天时O3浓度高,多云、阴雨天气O3浓度低.  相似文献   

14.
臭氧-生物活性炭组合工艺中最佳臭氧投加剂量的确定   总被引:10,自引:1,他引:9  
孔令宇  张晓健  王占生 《环境科学》2006,27(7):1345-1347
在水处理过程中投加臭氧,可提高饮用水的可生物降解性.臭氧氧化后继的生物过滤,可以减少水中可生物降解有机物数量,提高饮用水的生物稳定性.试验表明,臭氧投加量2~8mg/L可使AOC-P17,AOC-NOX和BDOC分别增加20.9%~85.5%,42.1%~158.2%和21.4%~84.4%.臭氧投加量为3mg/L时,AOC和BDOC增加得最多,即3mg/L的臭氧投量为最佳投加剂量.生物活性炭滤柱(BAC)出水AOC浓度(乙酸碳)均低于50μg/L,在35.9~46.6μg/L之间,属于生物稳定性水质.  相似文献   

15.
一次污染物对臭氧生成的影响研究   总被引:2,自引:0,他引:2  
利用OZIPR模式模拟研究一次污染物对φ(O3)的影响,研究设计3组比较方案:VOC和NOx初始浓度比,VOC和NOx排放比以及VOC排放中各组分所占比例的变化对臭氧生成浓度的影响.结果表明:随着VOC与NOx初始浓度比和排放比的增大,φ(O3)增长速率提高,其最大值出现时间提前,并且呈现先上升后下降的变化规律.结合O3等浓度线分析认为,深圳市O3污染属于VOC敏感型,控制VOC是控制φ(O3)的有效途径.改变VOC组分的研究表明,控制VOC排放时应重点控制含乙烯、二甲苯、三甲苯较多的污染源.   相似文献   

16.
饮用水中内分泌干扰物双酚A的臭氧氧化降解研究   总被引:14,自引:1,他引:13  
徐斌  高乃云  芮旻  王虹  伍海辉 《环境科学》2006,27(2):294-299
采用臭氧氧化工艺对饮用水中内分泌干扰物双酚A特性进行了研究.研究表明:在原水浓度为1.0mg/L左右,臭氧总投加量为1.0、1.5和2.0mg/L条件下,30min BPA去除率可达70%、82%和90%.通过考察不同臭氧投加量、不同本底条件、不同BPA初始浓度和不同臭氧投加时间对BPA臭氧氧化的影响,分析得出臭氧投加量对BPA的降解占主导地位,而臭氧接触时间对去除效果的影响很小;采用紫外波长扫描确定在臭氧降解BPA的同时生成了在UV254上有吸收的产物.通过考察臭氧氧化双酚A过程中UV254的变化,提出低臭氧投加量下BPA不能完全被氧化,而采用缩短臭氧投加时间、加大臭氧投加量以及提高水中余臭氧浓度等方法,有利于水中BPA的完全降解.  相似文献   

17.
为揭示中国自然背景地区臭氧浓度变化特征,并以其为自然背景值指导人为活动导致的臭氧污染控制工作,该研究通过汇总统计中国15个典型自然背景地区与337个地级及以上城市2016—2020年环境空气臭氧自动监测数据,比较分析中国自然背景地区臭氧浓度的年度、季节、日内变化规律与空间分布规律. 结果表明:2016—2020年,中国自然背景地区臭氧年均浓度明显高于城市区域,但臭氧日最大8小时平均浓度的第90百分位数(简称“臭氧年90百分位浓度”)明显低于城市,自然背景地区和城市区域臭氧年均浓度同步快速提升,年均增长分别为1.5和2.0 μg/m3. 中国自然背景地区臭氧浓度季节性变化规律与城市区域存在较大差异,自然背景地区臭氧平均浓度最高值出现在春季,夏、秋、冬三季臭氧平均浓度差异不明显,与东亚环太平洋背景地区臭氧浓度季节性变化规律(春季最高、夏季最低)存在明显差异. 部分自然背景地区受人为活动排放的影响较小,臭氧浓度不存在明显的日内峰谷差,全天臭氧浓度基本保持相同水平;部分自然背景地区可能受邻近城市人为活动排放的臭氧前体物影响,臭氧浓度日内变化规律与邻近城市较为一致,存在明显的日内峰谷差. 研究显示,中国自然背景地区臭氧浓度变化规律与城市区域存在显著差异,臭氧浓度年均值升高迅速,部分自然背景地区臭氧浓度变化规律可能受邻近城市人为活动排放的臭氧前体物传输的影响.   相似文献   

18.
臭氧氧化分解饮用水中嗅味物质2-甲基异莰醇   总被引:9,自引:2,他引:7  
马军  李学艳  陈忠林  齐飞 《环境科学》2006,27(12):2483-2487
比较了几种常见氧化剂对饮用水中嗅味物质2-甲基异莰醇(2-methylisoborneol,MIB)的氧化去除效果.结果表明,KMnO4、NaClO、H2O2等氧化剂的氧化作用对水中MIB的去除效果均较差,而臭氧却能有效地将其氧化;考察了pH对臭氧化去除MIB的影响规律,发现pH在7.0~10.0条件下,随着pH值增加MIB去除率增加,但当pH达到10.0左右时,MIB的去除率反而下降;MIB的臭氧化去除效果随着自由基捕获剂(重碳酸盐和叔丁醇)的浓度增加而明显地降低,说明臭氧化去除水中MIB主要遵循自由基作用机理;以松花江江水为本底进行试验和与蒸馏水进行试验的结果相差不大,原因可能是由于松花江水体中碳酸盐浓度较低(小于50 mg/L),对自由基捕获能力较小,同时江水中的部分腐殖质(NOM)对臭氧去除MIB的过程起到了促进作用.  相似文献   

19.
城市景观水体中腐殖酸的臭氧氧化去除   总被引:1,自引:0,他引:1  
以南京师范大学德风园池底泥中提取的腐殖酸(HA)为研究对象,采用臭氧氧化技术对其进行去除,对初始pH值、混合气体流量、腐殖酸(HA)初始浓度以及水中常见离子等因素对去除效果的影响进行了研究。实验结果表明:腐殖酸(HA)的去除率随初始pH值的升高而提高,随混合气体流量减少而提高;当腐殖酸(HA)初始浓度为5 mg/L时,反应过程中溶液的UV254升高,紫外扫描结果发现,溶液在200~220 nm内出现杂乱的吸收峰,表明有新物质生成;水中常见的无机阴离子(CO32-、HCO3-)和二价金属离子(Ca2+、Cu2+)的存在会降低臭氧对腐殖酸(HA)的去除率。  相似文献   

20.
The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of e uent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation e ciency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation e ciency and chl-a removal e ciency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of e uent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号