首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A good acoustic environment is absolutely essential to maintaining a high level satisfaction and moral health among residents. Noise and other boresome sounds come from both in- door and outdoor sources. For the residential buildings adjacent to heavy traffic roads, outdoors traffic noise is the main source that affects indoor acoustic quality and health. Ventilation and outdoor noise prevention become a pair of contradictions for the residents in China nowadays for those buildings adjacent to heavy traffic roads. It is investigated that traffic noise emission is mainly con- stituted by the motors of trucks, buses and motorcycles as well as brake. In this paper, two methods of traffic noise reduction on the indoor sound environment and comfort are carried out to study and compare the residential buildings adjacent to heavy traffic roadway in a city. One is to install noise barriers on the two sides of the roadway, which consist of sound-proof glass and plas- tic materials. The effect of sound-insulation of this method is heavily dependent on the relative distance between the noise bar- rier and indoors. A reduction of sound with an average pressure level of 2–15dB is achieved on the places behind and under the noise barrier. However, for the equivalent of noise barrier height, the noise reduction effect is little. As for the places of higher than the noise barrier, the traffic noise will be even strengthened by 3–7dB. Noise increment can be seen at the points of distance farther than 15m and height more than noise barrier; the noise reduction effect is not satisfactory or even worsened. In addition, not every location is appropriate to install the noise barrier along the heavy traffic roads. The other method of noise reduction for the buildings adjacent to heavy traffic is to install the airproof and soundproof windows, which is the conversion from natural venti- lation to mechanical ventilation. A reduction of sound with an average pressure level of 5dB to 17dB can be achieved compared with common glass windows, if adopting sound proof glass win- dows. These two methods are helpful to isolate high frequency noise but not for low frequency noise. For those frequency noises, installing thick and cotton curtain and porous carpet can only decrease 2.4–4.5dB, which hardly contributes to indoor sound comfort, so further study is demanded to cut down traffic noise, especially to cut down the low frequency noise.  相似文献   

2.
Environmental noise is a major source of public complaints. Noise in the community causes physical and socio-economic effects and has been shown to be related to adverse health impacts. Noise, however, has not been actively researched in the United States compared with the European Union countries in recent years. In this research, we aimed at modeling road traffic noise and analyzing human exposure in Fulton County, Georgia, United States. We modeled road traffic noise levels using the United States Department of Transportation Federal Highway Administration Traffic Noise Model implemented in SoundPLAN?. After analyzing noise levels with raster, vector and fa?ade maps, we estimated human exposure to high noise levels. Accurate digital elevation models and building heights were derived from Light Detection And Ranging survey datasets and building footprint boundaries. Traffic datasets were collected from the Georgia Department of Transportation and the Atlanta Regional Commission. Noise level simulation was performed with 62 computers in a distributed computing environment. Finally, the noise-exposed population was calculated using geographic information system techniques. Results show that 48% of the total county population [N=870,166 residents] is potentially exposed to 55 dB(A) or higher noise levels during daytime. About 9% of the population is potentially exposed to 67 dB(A) or higher noises. At nighttime, 32% of the population is expected to be exposed to noise levels higher than 50 dB(A). This research shows that large-scale traffic noise estimation is possible with the help of various organizations. We believe that this research is a significant stepping stone for analyzing community health associated with noise exposures in the United States.  相似文献   

3.
《Environment international》2012,38(8):1336-1341
Environmental noise is a major source of public complaints. Noise in the community causes physical and socio-economic effects and has been shown to be related to adverse health impacts. Noise, however, has not been actively researched in the United States compared with the European Union countries in recent years. In this research, we aimed at modeling road traffic noise and analyzing human exposure in Fulton County, Georgia, United States. We modeled road traffic noise levels using the United States Department of Transportation Federal Highway Administration Traffic Noise Model implemented in SoundPLAN®. After analyzing noise levels with raster, vector and façade maps, we estimated human exposure to high noise levels. Accurate digital elevation models and building heights were derived from Light Detection And Ranging survey datasets and building footprint boundaries. Traffic datasets were collected from the Georgia Department of Transportation and the Atlanta Regional Commission. Noise level simulation was performed with 62 computers in a distributed computing environment. Finally, the noise-exposed population was calculated using geographic information system techniques. Results show that 48% of the total county population [N = 870,166 residents] is potentially exposed to 55 dB(A) or higher noise levels during daytime. About 9% of the population is potentially exposed to 67 dB(A) or higher noises. At nighttime, 32% of the population is expected to be exposed to noise levels higher than 50 dB(A). This research shows that large-scale traffic noise estimation is possible with the help of various organizations. We believe that this research is a significant stepping stone for analyzing community health associated with noise exposures in the United States.  相似文献   

4.
Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300 nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.  相似文献   

5.
利用GC-MS对上海市玻璃表面有机膜中PAHs浓度进行了定量分析。结果表明随着楼层的增加,10层居民楼玻璃表面PAHs浓度出现先增加后减少的趋势,最高浓度出现在3层(736 ng/m~2),最低在9层(346 ng/m2);17层公寓楼PAHs浓度则是先减少后增加再减少的趋势,最高浓度出现在9层(2 338 ng/m~2),最低在16层(564 ng/m~2)。TOC与PAHs相关性分析暗示除TOC外,玻璃表面PAHs富集可能还受控于其他因素。10层居民楼主要以3环和4环PAHs为主;而17层公寓楼则以4环为主。玻璃外表面PAHs浓度(555 ng/m~2)远高于内表面(308 ng/m~2);外表面主要以Phe、Pyr、Chry、Fluo和Fl为主;内外表面低环PAHs比值接近于1,高环比值基本上低于0.6。TEQ值虽然较低,但生态风险仍不能忽视。  相似文献   

6.
Indoor and outdoor endotoxin in PM2.5 was measured for the very first time in Santiago, Chile, in spring 2012. Average endotoxin concentrations were 0.099 and 0.094 [EU/m3] for indoor (N = 44) and outdoor (N = 41) samples, respectively; the indoor–outdoor correlation (log-transformed concentrations) was low: R =  0.06, 95% CI: (− 0.35 to 0.24), likely owing to outdoor spatial variability.A linear regression model explained 68% of variability in outdoor endotoxins, using as predictors elemental carbon (a proxy of traffic emissions), chlorine (a tracer of marine air masses reaching the city) and relative humidity (a modulator of surface emissions of dust, vegetation and garbage debris). In this study, for the first time a potential source contribution function (PSCF) was applied to outdoor endotoxin measurements. Wind trajectory analysis identified upwind agricultural sources as contributors to the short-term, outdoor endotoxin variability. Our results confirm an association between combustion particles from traffic and outdoor endotoxin concentrations.For indoor endotoxins, a predictive model was developed but it only explained 44% of endotoxin variability; the significant predictors were tracers of indoor PM2.5 dust (Si, Ca), number of external windows and number of hours with internal doors open. Results suggest that short-term indoor endotoxin variability may be driven by household dust/garbage production and handling. This would explain the modest predictive performance of published models that use answers to household surveys as predictors. One feasible alternative is to increase the sampling period so that household features would arise as significant predictors of long-term airborne endotoxin levels.  相似文献   

7.
A subcommittee of the Nordic Committee for Building Codes has released guidelines for building regulations regarding indoor air quality, especially concerning ventilation. The main features of the guidelines, such as acceptable outdoor air quality for ventilation and minimum outdoor air flows for dwellings and offices, are presented and discussed. Mechanical ventilation is, in principle, required in all buildings including dwellings, due to the requirement of a minimum outdoor air change of 0.5 h−1 and the normal highly airtight nature of new buildings. The guidelines are a basis for designing energy-efficient buildings while maintaining an indoor air quality which provides acceptable comfort and does not impair health.  相似文献   

8.
As national trends accelerate towards the reduction of ventilation and infiltration rates in buildings, coupled with an increased use of synthetic chemicals in the indoor environment, a new phenomenon has arisen: the “sick building” syndrome. Traditional approaches to environmental health developed for the outdoor air, or for the industrial occupational setting, are inadequate to deal with this problem. It is argued that a comprehensive approach to the problem of indoor air pollution is necessary to protect public health.  相似文献   

9.
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10 m away from the roadway is roughly 16–21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253 nm). For ultrafine particles (< 100 nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D ~ 2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D < 2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.  相似文献   

10.
In order to compare the effects of infrasound and low-frequency sound on sleep with those of audible sound, healthy students were exposed to two kinds of sound, (a) infrasound and low-frequency sound (10, 20, 40, and 60 Hz), and (b) synthesized traffic noise with peak sound pressure level in low-frequency range (sound composed of low and audible frequency), throughout their sleep with the recording of the students' EEG. The effects were evaluated by the “reaction rate”. Concerning sound (a), the sound pressure level which causes the reactions of over 50% for the first time was used as the threshold sound pressure level signifying the occurrence of sleep disturbance. The threshold sound pressure levels of 10 and 20 Hz could not be evaluated. The threshold sound pressure levels of 40 and 63 Hz were 95 and 90 dB, respectively. With both sounds, the reaction rate was the highest in sleep stage 1 and the lowest in sleep stage 3+4. The pattern of sleep was little affected by sound (a). On the other hand, it was considerably affected by sound (b). These results suggest that audible sound has more harmful effects on sleep, compared with infrasound and low-frequency sound.  相似文献   

11.
Employees in six day-care institutions were asked to fill out a simple questionnaire before and one year after technical changes were made in their buildings. The institution were defined as sick buildings, based on a prevalence (exceeding 40%) of irritative symptoms and general symptoms among the employees. Based on the technical measurements there were no obvious reasons for the complaints. It was decided, however, to remove man-made mineral-acoustic ceilings and to install mechanical ventilation. One year later there was a significant reduction in the prevalence of symptoms (irritative and general symptoms related to the sick building syndrome) among the employees. The study indicates that systematic monitoring of employees' symptoms before and after corrective action is an important indicator of the benefit of the actions and might be used routinely by architects, engineers, and local authorities in dealing with indoor climate problems. Follow-up studies might give more knowledge of the causes of sick building syndrome.  相似文献   

12.
Assessment of airborne organophosphorus pesticides in houses of young children (1-6 years old) and childcare facilities was conducted following pesticide applications in an agricultural community in Japan. Trichlorfon and fenitrothion, applied in two separate periods, were frequently detected from outdoor and indoor air. Dichlorvos, the primary degradation product of trichlorfon, was also detected after the application of trichlorfon. Both the outdoors and indoor concentration of applied pesticide were shown to increase with decreasing distance from the pesticide-applied farm. Indoor concentration of these pesticides significantly correlated with outdoor concentration (p=0.001 for trichlorfon and p=0.001 for fenitrothion), indicating infiltration of applied pesticide inside. Ratio of indoor to outdoor concentration (I/O ratio) of fenitrothion was higher for houses with windows open during the application than those with closed windows (median value: 0.74 vs. 0.16, p=0.003). However, a similar trend was not observed for trichlorfon as well as dichlorvos in the first period. Dichlorvos was found to have a higher I/O ratio than trichlorfon during the period, and clear correlation between indoor concentrations of dichlorvos and those of trichlorfon suggested increased decomposition of trichlorfon in the indoor environment. Daily inhalation exposure estimated by using the fixed measurement data and time-activity questionnaire ranged from 0 to 35 ng/kg/day for trichlorfon, from 0 to 26 ng/kg/day for dichlorvos, and from 0 to 44 ng/kg/day for fenitrothion. Median inhalation exposure from indoor air accounted for 74%, 86.3%, and 45% of the daily inhalation exposure, respectively. For kindergarteners or nursery school children, inhalation exposure at childcare facilities was comparable with or more than that at home, indicating that pollution level at childcare facilities had potential of high impact on children's exposure. Estimated daily inhalation exposures were inversely correlated to the proximity of their activity location to the pesticide-applied farm.  相似文献   

13.
In the HYENA study (HYpertension and Exposure to Noise near Airports) noise annoyances due to aircraft and road traffic noise were assessed in subjects that lived in the vicinity of 6 major European airports using the 11-point ICBEN scale (International Commission on Biological Effects of Noise). A distinction was made between the annoyance during the day and during the night. Lden and Lnight were considered as indicators of noise exposure. Pooled data analyses showed clear exposure–response relationships between the noise level and the noise annoyance for both exposures. The exposure–response curves for road noise were congruent with the EU standard curves used for predicting the number of highly noise annoyed subjects in European communities. Annoyance ratings due to aircraft noise, however, were higher than predicted by the EU standard curves. The data supports other findings suggesting that the people's attitude towards aircraft noise has changed over the years, and that the EU standard curve for aircraft noise should be modified.  相似文献   

14.
In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated.The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OPAA m−3 and OPGSH m−3 (% antioxidant depletion/m3 air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OPAA m−3 and OPGSH m−3 with higher mean values during winter. The indoor/outdoor OPAA m−3 and OPGSH m−3 ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building.  相似文献   

15.
上海市崇明岛公路两侧土壤重金属污染研究   总被引:4,自引:0,他引:4  
采集了上海市崇明岛陈海、北沿公路两侧土壤和灰尘样品270余个,测定了样品的Pb、Cd、Cu、 Zn和Cr重金属含量。结果表明,陈海和北沿公路两侧土壤重金属Pb、Cd、Cu、 Zn和Cr的平均含量达到277、0279、258、918和776 mg/kg,土壤Cd污染较严重。采集的路面灰尘样品Pb、Cd、Cu、 Zn和Cr的平均含量达到512、049、489、209和970 mg/kg,超过土壤背景值2~4倍,是土壤重金属的主要二次污染源。公路防护林体系较差的北沿公路路侧土壤纵向剖面(垂直于公路走向)重金属含量随距路肩距离增加呈指数下降,土壤重金属重污染区在距路肩15 m范围内。防护林体系较完善的陈海公路距路肩15 m范围内土壤重金属污染较小,土壤重金属重污染区出现在距路肩20~50 m范围内。  相似文献   

16.
On 15 dates, 5000 measurements of carbon monoxide (CO) were made in downtown commercial settings in four California towns and cities (San Francisco, Palo Alto, Mountain View, and Los Angeles), using personal exposure monitoring (PEM) instruments. Altogether, 588 different commercial settings were visited, and indoor and outdoor locations were sampled at each setting. On 11 surveys, two CO PEM's were carried about 0.15–6 m apart, giving 1706 pairs of observations that showed good agreement: the correlation coefficient was r = 0.97 or greater, and the average difference was less than 1 ppm (μL/L) by volume. Of 210 indoor settings (excluding parking garages), 204 (97.1%) had average CO concentrations less than 9 ppm (μL/L); of 368 outdoor settings, 356 (96.7%) had average CO concentrations less than 9 ppm (μL/L). For a given date and commercial setting, CO concentrations were found to be relatively stable over time, permitting levels to be characterized by making only brief visits to each setting. The data indicate that most commercial settings experience CO concentrations above zero indoors, because CO tends to seep into buildings from vehicular emissions outside. Levels in these locations usually are not above 5 ppm (μL/L) and seldom are higher than the U.S. health-related ambient air quality standards for CO. However, indoor garages and buildings with attached indoor parking areas are exceptions and can experience relatively high CO concentrations.  相似文献   

17.
Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions.  相似文献   

18.
From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.  相似文献   

19.
The relationship between the odor strength of total air samples and the odor strengths of the constituents was investigated in three field experiments in an office building and a new preschool. The odor strength was scaled by magnitude estimation according to a master scale principle which results in comparable values for the total and the constituent odors. Between 60 and 120 chemical components were detected by GC/FID in the indoor air samples (N = 66). Most (81%) of the detected components in an air sample were odorous, even though most of them were of the low concentrations. By a method of pattern analysis, chemical as well as odor patterns of indoor air were found to be characteristics of different buildings. From the odor patterns (POG), the “odor print” of the outdoor air associated with the buildings was also recognized in the indoor air. Thus, the “odor print” of an air sample is different from its “chemical print”. A model was found that predicts the overall odor strength of an air sample from the number of FID-detected components most frequently reported to have a strong odor.  相似文献   

20.
This paper gives some results of current research on the elevation of the Speech-Reception Threshold (SRT) in noise due to hearing impairment. The experiments were carried out with simple sentences as speech material. The noise had the same spectrum as the long-term average of the speech signal. The SRT was the level at which 50% of the sentences were repeated correctly by the listener. Roughly, in the case of steady-state noise, a 3 dB higher speech-to-noise ratio is required. In the case of a fluctuating interfering sound (e.g., a competing peaker), the critical speech-to-noise ratio is about 8.5 dB higher than for normal-hearing listeners. Subsequent data suggest that for the hearing-impaired listeners the benefit of binaural hearing is about 3 dB less than in normal hearing. Since a difference of 1 dB in SRT corresponds with 16–20% difference in the intelligibility score of sentences, the data can explain why many hearing-impaired people have difficulties in understanding speech at speech-to-noise ratios acceptable for normal-hearing listeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号