首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于东莞市大气复合污染超级监测站的监测数据,选取2017年12月一次典型空气污染过程,对污染期间气象要素、大气颗粒物组分特征和污染物来源进行综合研究。结果表明,在污染期间,首要污染物为PM_(2.5),日均值为86μg/m3,其主要化学组分依次是OC、NO_3~-和SO_4~(2-),分别占PM_(2.5)的19.7%,16.1%和14.9%;在不利的气象条件下,本地污染排放和外源输入的一次污染物快速生成二次有机物、硝酸盐和硫酸盐,是造成该次空气污染的主要原因; PM_(2.5)污染主要来源为机动车尾气(27.7%)及二次无机源(19.0%)。  相似文献   

2.
2015年10月南宁市区典型大气污染过程成因分析   总被引:1,自引:0,他引:1  
2015年10月15日—24日南宁市出现了一次典型的大气细颗粒物(PM2.5)污染过程,利用单颗粒气溶胶质谱仪和大气颗粒物激光雷达仪器进行监测,结合气象、后向轨迹及卫星遥感影像等资料分析大气污染成因及远距离传输对该次污染过程的影响。研究表明:此次南宁市大气污染以PM2.5超标为主,PM2.5日均质量浓度最高为85.2 μg/m3,超过标准值13.6%,其中PM1占PM2.5的66.3%。此次污染过程是由本地污染源与外来源影响互相叠加,在静稳、高温、强光等天气情况下发生协同作用引起的,污染物主要来源为燃煤源、机动车尾气源和生物质燃烧源,占全部来源的75.0%~80.0%。  相似文献   

3.
2015年11月1—4日,哈尔滨市及周边地区发生了连续的灰霾天气,颗粒物浓度急剧升高。污染发生时,监测仪器均布设在哈尔滨市区上风向30 km处(哈尔滨市双城区)并开展了连续96 h的监测分析。综合利用气象观测资料,3D可视激光雷达监测资料及地面空气污染监测资料分析了灰霾天气发生的气象条件和污染边界层特征,根据哈尔滨市双城区大气污染物排放源谱库对主要成分进行来源解析,结合颗粒物质量浓度和气象条件研究了秸秆焚烧对灰霾天气的影响。结果表明,灰霾天气持续期间,夜间生物质燃烧源成为该地区颗粒物的第二大源;秸秆焚烧产生的大气污染物,由于地面长时间静风,污染边界层降低等原因,致使本地污染物累积、不易扩散,加剧了本次污染。  相似文献   

4.
利用AQI和PM_(2. 5)质量浓度、地面气象要素、NCEP、ERSST_V3、GBL等资料,对2016年12月29日至2017年1月5日洞庭湖区一次重度空气污染过程成因进行了分析。结果表明,静稳天气形势下的累积效应和本地持续升温、降压、增湿、小风导致污染物浓度不断增加。本地风速与雨量对污染物浓度产生显著影响。降温前风速明显加大,有利于污染物快速扩散。湿度增加有利于污染物吸湿性增长,但高湿易引起降水有利于污染物的湿清除。此次重度空气污染过程中大气稳定度为中性或稳定,14:00混合层高度逐渐降低且重度空气污染日降至100 m以下。污染物空间分布与主导风向和污染通道密切相关。气流后向轨迹分析表明,洞庭湖区各地气流来源和影响路径差异明显,且存在大范围区域性同步污染现象。北方外来污染源是洞庭湖区重要的污染面源,本地工业污染排放点源和地理条件也是洞庭湖区空气污染物空间分布差异的重要因素。  相似文献   

5.
利用PM2.5质量浓度、地面气象要素、NCEP、ERSST_V3、GBL等资料,研究了2021年12月7—11日长株潭地区一次重度空气污染过程的特征及成因。结果表明,高空平直环流、无明显槽脊影响,地面弱冷空气活跃是本次重度空气污染过程的主要环流形势特征;地面均压场、小风和升温增湿是此次重度空气污染过程的主要气象要素特征。污染物浓度变化与主导风向和污染通道密切相关,本地风速对混合层的高度、污染物水平扩散影响较大,600~700 hPa逆温层有利于污染物在主导风作用下近距离传输及在低层交换积累。我国中东部污染物积聚是长株潭区域重要的污染来源,长株潭地区存在区域性同步污染现象。低层流入长株潭区域气流轨迹差异及地理条件是长株潭污染物空间分布差异的重要因素。  相似文献   

6.
2019年10月—2020年10月在江淮平原东部城市淮安开展持续1 a的PM2.5采样分析,研究PM2.5的组成和污染特征。结果表明:淮安市大气PM2.5年均质量浓度为(52.2±27.1)μg/m3,是国家二级标准(35 μg/m3)的1.5倍,其中冬季最高,为(67.5±36.4)μg/m3,是国家二级标准的1.9倍;PM2.5中的ρ(NO3-)/ρ(SO2-4)=1.76,说明机动车尾气排放对淮安市PM2.5的影响较大;PM2.5中平均ρ(OC)/ρ(EC)值为4.1±1.1,说明淮安市PM2.5受大气二次生成影响明显;Si、Al、Ca等无机元素的质量浓度较高,表明淮安须加大对扬尘污染的治理力度。  相似文献   

7.
利用多种污染物浓度数据、气象观测数据,结合HYSPLIT后向轨迹模式,对2015年11月6—10日发生在沈阳的一次较长时间重污染天气过程,从大气浓度变化、天气形势特征及成因机制等方面进行综合分析。结果表明,重污染期间日空气质量指数均超过重度污染限值200,首要污染物PM_(2.5)最高小时质量浓度达到1 326μg/m3,为沈阳市监测PM_(2.5)以来的历史峰值。此次空气污染是气象及人为因素共同作用的结果,重污染过程时段内高空场不利于气流上升运动的发展,地面倒槽、稳定的大气层结不利于污染物的扩散。此次重污染过程与大范围秸秆集中燃烧、大量污染物排放有一定关系。通过后向轨迹计算分析,发现颗粒物长距离输送对区域污染产生一定影响。  相似文献   

8.
兰州市冬季冷锋前、后空气污染指数变化的个例分析   总被引:2,自引:0,他引:2  
利用2002年12月4~13日兰州地区气象和大气污染物浓度资料,分析了此段时间内兰州市区大气污染现状和相应的大气环流形势,结果表明:当高空为暖高压脊控制、近地层逆温强度和厚度较大时,污染物浓度逐渐增高,并达到峰值;当有冷空气影响本地时,污染物浓度迅速降低.由于兰州城区冬季各大气污染源排放总量的日际变化是很小的,因此冷空气活动是造成污染浓度日际变化的重要因素,空气污染浓度的变化与气象条件有着显著的相关关系。  相似文献   

9.
2018年11月5—7日,韩国首尔出现了一次PM2.5污染过程。利用拉格朗日轨迹分析(HYSPLIT)模型分析了首尔峰值浓度气团的来源,结合污染物监测和气象资料,定性分析了中国对韩国浓度高值可能的影响及其程度。利用嵌套网格空气质量预报模式(NAQPMS)及其耦合的在线污染来源追踪模块进行了污染来源解析和敏感性测试,分别计算了同一时期中韩两国相互间的PM2.5传输贡献。结果显示:2018年11月5—7日,中国对韩国首尔污染过程的日均贡献不足10%;此次污染过程后期,首尔的污染气团对上海PM2.5浓度峰值产生了影响。  相似文献   

10.
选取2015—2019年抚州市临川区不同时间尺度的空气质量指数(Air Quality Index,AQI)与6种常规大气污染物监测数据,分析了临川区主要大气污染物的时空变化及影响因素。结果表明,临川区大气PM2.5、PM10、SO2和CO年均质量浓度整体呈现下降趋势,O3年均质量浓度逐年增加,说明临川区应警惕O3污染的加剧。PM2.5、PM10和NO2质量浓度的月变化趋势表现为冬高夏低的特征。此外,2015—2019年临川区大气PM2.5、PM10月均浓度与AQI的相关性极高(r>0.96,P≤0.01),表明临川区大气污染类型为颗粒型污染。根据污染物浓度日变化规律以及相关性分析结果可知,PM2.5、PM10、SO2、NO2日变化趋势与AQI相似。通过对2015—2019年临川区除夕至大年初一期间大气污染物变化规律和复合污染特征的分析可以发现,2018年和2019年空气污染程度较之前的3年有所下降,说明烟花爆竹燃放禁令对春节期间空气污染的控制具有明显成效。此外,控制移动源排放成为临川区大气污染治理亟需解决的重要问题。  相似文献   

11.
选取南京市2017年PM2.5逐时观测数据,分析其颗粒物污染特征,并利用聚类分析、潜在源贡献因子法和GDAS气象数据,分析不同高度、季节下南京市主要气流输送路径及PM2.5污染的主要潜在源区。结果表明:南京市PM2.5污染冬季最严重,夏季最轻,逐时PM2.5浓度变化范围夏季小于冬季;夏季气流轨迹主要来自东南方向,秋冬春等季节以偏西和西北路径为主,且随着高度的增加,气流输送速度逐渐加快;冬季对南京市PM2.5污染的贡献最为显著,低层PM2.5污染贡献源区主要集中在近地区域,且贡献率较高,随着高度的增加,贡献源区由研究区域向四周辐散,贡献范围广,贡献率降低。  相似文献   

12.
利用气溶胶激光雷达观测结果,结合环境监测站污染物浓度数据、气象观测资料及HYSPLIT后向轨迹模式结果,综合分析2020年1月17—22日镇江市一次大气污染过程。结果显示,此次污染过程前期天气形势稳定,不利于污染物的清除及扩散,后期受偏北风影响,北方污染物向镇江输送,使得本地污染物持续累积,污染不断加重。特征雷达图分析表明此次污染为以PM2.5为主的二次污染。激光雷达显示污染日消光系数为0.00.9 km-1,消光系数垂直廓线日变化特征明显,气溶胶粒子主要堆积在0.6 km高度以下,并且很好地揭示了污染气团从高空逐渐下沉最终与本地污染叠加的过程,与HYSPLIT模式解析的污染气团来源结果基本一致。  相似文献   

13.
为了更为有效地治理酸雨污染,根据南充市环境监测中心站提供的2009—2017年降水监测数据,对南充市城区酸雨污染情况进行了分析及源解析。结果表明:2009—2017年,南充市降水pH从4.60波动上升至5.6以上,酸雨频率波动下降,酸雨污染情况有所改善;[SO4^2-]/[NO3^-]从4.92下降至0.86,酸雨污染类型从硫酸型转变为硝酸-硫酸型。同时,对比分析2014—2016年大气污染物排放源可知,NOx排放源中,工业污染源占比由14%降至11%,生活污染源由2%上升至5%;SO2排放源中,工业污染源占比由62%降至43%,生活污染源由38%上升至57%,表明南充市SO2污染已从以工业污染源为主转变为工业污染源与生活污染源并重。  相似文献   

14.
利用2014—2017年河源城区环境空气自动监测站数据和气象数据,对期间出现的污染天气过程进行统计,对影响污染的天气类型进行分类。结果表明,2014—2017年,河源城区累计出现污染天气65 d,超标污染物主要为PM2.5和O3,O3超标比例逐年上升成为达标率首要影响因子。PM2.5易污染天气型中冷高压出海占比最多(38.2%),其次为冷锋前(17.7%)和均压场(14.8%);O3易污染天气型中副高控制占比最多(31.0%),其次为副高叠加台风外围(24.1%)和冷高压出海(13.8%)及均压场(13.8%)。河源城区低程度污染(AQI值101~110)占比较大。  相似文献   

15.
秸秆焚烧对空气质量影响特征及判别方法的研究   总被引:4,自引:0,他引:4  
利用南京空气自动监测数据及PM_(2.5)组分监测结果,分析了2011年夏收秸秆焚烧期间大气污染特征,并探寻快速判别秸秆焚烧影响的指标及方法。结果表明:秸秆焚烧期间PM_(2.5)污染特征显著,其组分中K~+、EC、OC等浓度相对偏高。基于离子组分及碳元素在线监测数据,可选取K~+作为快速判别指标,并根据K~+与PM_(2.5)的相关性,计算秸秆焚烧对PM_(2.5)的贡献。同时结合OC、EC浓度变化,综合判别秸秆焚烧对空气质量的影响程度。  相似文献   

16.
Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2?±?24.6, 96.2?±?12.1, and 64.3?±?21.2 μg/m3 of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m3. In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60 %). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.  相似文献   

17.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

18.
随着《大气污染防治行动计划》和《打赢蓝天保卫战三年行动计划》的相继实施,在高强度的污染治理下,中东部地区PM2.5污染改善效果显著。为探讨在PM2.5浓度不断降低的背景下,仍时有发生的武汉冬季重污染过程的成因及特征,以2020年12月武汉地区一次长达10 d的重污染过程为例,利用多种观测数据和嵌套网格空气质量预报模式系统(NAQPMS)分析污染过程中PM2.5的化学组分特征和区域贡献等。结果表明:污染日二次无机盐SNA (SO42-、NO3-和NH4+)和碳质组分(EC和OC)在PM2.5中的占比高(分别为78%和18%),NO3-的占比从清洁日的36%上升到污染日的46%,是污染过程中占比最高的化学组分。污染期间,NO3-和SO42-的浓度比为2.9~6.1,因此二次无机盐的主要来源可能是移动源;OC和EC的浓度比为3.0~9.8,因此碳质组分的主要来源可能是燃煤源。污染期间主要有河南-孝感-武汉和安徽-黄冈-武汉2条污染传输带,污染物传输以武汉周边城市的近距离输送为主,随着污染程度加重,武汉本地及武汉城市圈的区域贡献增加。重度污染天是静稳天气下持续的偏弱东风和西北风输送的污染气团在不易扩散的天气条件下累积形成的。  相似文献   

19.
Tehran, the capital city of Iran, is an important industrial and commercial center. This city is one of the worst cities in the world in terms of air pollution, which is mostly due to mobile sources rather than stationary sources. Particulate matter (PM), which is a complex mixture of extremely small particles and liquid droplets, is considered as an important source of air pollution in Tehran. In this study, our objective was to study PM10, PM2.5, and PM1.0 mass and number concentrations and find the correlations of these two parameters in the west-central parts of Tehran during two consecutive warm and cold seasons. The particles collected from five stations were analyzed for their mass and number simultaneously by a laser-based Grimm dust monitor. In general, it was found that the accumulation of the PM in this region is more in the cold season. PM10 mass concentration increases almost twofold and PM2.5 and PM1.0 almost three times in this season. The mean number concentration of the particles (0.3–20 μm) was found to be almost 4.8 times in the cold season. It was also noticed that the average dimensions of the particles decrease in that season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号