首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用电容耦合等离子体和催化剂协同作用对干空气中的甲烷进行了氧化实验,并和没有放置催化剂时进行了对比,结果表明,放置催化剂后甲烷的分解效率明显提高,反应产物中CO2的选择性增加,副产物NO和NO2的浓度减少.反应所需的能耗降低。甲烷的最终氧化产物为CO、CO2和H2O。  相似文献   

2.
CuO(-CeO_2)/SBA-15对萘氧化的催化活性及CO_2选择性研究   总被引:1,自引:0,他引:1  
通过浸渍法制备CuO/SBA-15和CuO-CeO2/SBA-15两种介孔材料催化剂,采用BET、XRD、TPR和XPS等对催化剂进行表征,重点考察催化剂对萘氧化反应的催化活性及对产物CO2的选择性。BET、XRD和XPS等实验结果表明CuO高度分散于介孔分子筛SBA-15中,CeO2可促进CuO在载体上的分散,同时能降低催化剂的TPR还原温度。活性测试结果表明CuO/SBA-15对萘氧化反应的催化活性较高,但是催化氧化的CO2选择性较低,温度在380℃时CO2的生成率仅为60%左右;CeO2的添加不仅提高了CO2的生成率,15%CuO-15%CeO2/SBA-15在325℃使CO2生成率达到99%,而且CeO2增强了催化剂的稳定性。  相似文献   

3.
通过浸渍法制备CuO/SBA-15和CuO-CeO2/SBA-15两种介孔材料催化剂,采用BET、XRD、TPR和XPS等对催化剂进行表征,重点考察催化剂对萘氧化反应的催化活性及对产物CO2的选择性。BET、XRD和XPS等实验结果表明CuO高度分散于介孔分子筛SBA-15中,CeO2可促进CuO在载体上的分散,同时能降低催化剂的TPR还原温度。活性测试结果表明CuO/SBA-15对萘氧化反应的催化活性较高,但是催化氧化的CO2选择性较低,温度在380℃时CO2的生成率仅为60%左右;CeO2的添加不仅提高了CO2的生成率,15%CuO-15%CeO2/SBA-15在325℃使CO2生成率达到99%,而且CeO2增强了催化剂的稳定性。  相似文献   

4.
为了阐明汽车尾气中 NOX再燃烧的动力学进程 ,以甲醛和 NO2 作为探针分子 ,通过 FT-IR跟踪研究了反应体系中所产生的 HCO自由基与 NO2 反应的动力学。结果表明 ,反应的主要产物中包括 CO、CO2 、NO、HONO和 H2 O等分子 ,经长时间的反应 ,当体系中的 NO2 基本耗尽时 ,才有少量的 N2 O生成。这些产物分子分别是在几个不同途径的连串反应中形成的。从体系中 CO和 CO2 的生成量 ,测定了主反应的歧化反应速率比 ,并对相应的动力学机理进行了讨论。  相似文献   

5.
CuCoO_x/TiO_2催化氧化NO性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能.XRD、TPR和BET分析表明,350℃焙烧的催化剂具有Cu-Co2O4尖晶石结构,比表面积大,对N0的氧化效果好.在空速为5 000 h-1,NO进口浓度500 mg/m3,含氧量10%的条件下,反应温度300cc时N0转化率可达79.5%,250℃时N0转化率接近50%.该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活.该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理.  相似文献   

6.
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能。XRD、TPR和BET分析表明,350℃焙烧的催化剂具有CuCo2O4尖晶石结构,比表面积大,对NO的氧化效果好。在空速为5000h^-1,NO进口浓度500mg/m^3,含氧量10%的条件下,反应温度300℃时NO转化率可达79.5%,250℃时NO转化率接近50%。该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活。该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理。  相似文献   

7.
Sn(Ⅳ)掺杂纳米TiO2/AC降解橙黄G的动力学与机理研究   总被引:1,自引:0,他引:1  
采用溶胶凝胶法制备了掺杂Sn(Ⅳ)的TiO2/AC光催化剂,以生物染料橙黄G为目标降解物,研究了多相光催化降解橙黄G的动力学规律.研究表明,该反应符合Langmuir-Hinshelwood动力学方程,速控步为吸附反应.同时,利用GC/MS联用仪探讨了橙黄的中间产物及其降解机理:橙黄G在强氧化性自由基·OH、·OOH、·O2-的作用下逐渐分解氧化为小分子有机醛、酮、酸,最后转化为CO2、NH4 、NO3-、NO2-、SO42-和H2O等无机小分子.  相似文献   

8.
以聚砜(PSF)中空纤维膜为载体采用溶胶-凝胶法制备了Fe-TiO_2/PSF中空纤维复合膜催化剂,考察其光催化模拟烟气中NO的脱除性能。实验条件下,紫外光照射时NO去除率可达35%。采用X-射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)表征了Fe-TiO_2/PSF中空纤维复合膜催化剂,结果表明,膜催化反应中存在·OH自由基、NO_3~-等物质。Fe-TiO_2/PSF膜催化处理NO的作用机制为NO经膜孔吸附到催化剂表面,被Fe-TiO_2膜光催化反应产生的自由基团氧化成NO_2及HNO_2,经进一步氧化形成最终产物HNO_3。Fe-TiO_2/PSF膜光催化处理NO气体遵循Langmuir-Hinshelwood动力学模型。  相似文献   

9.
锰铜铈氧化物催化剂氧化NO性能及动力学研究   总被引:1,自引:0,他引:1  
实验以TiO2为载体采用浸渍法制备CuOx/TiO2、CeOx/TiO2、CuCeOx/TiO2和MnCuCeOx/TiO2催化剂,考察这些催化剂氧化NO活性,探究Cu、Ce摩尔比和添加Mn元素对CuCeOx/TiO2催化剂氧化NO活性的影响,使用扫描电镜观察催化剂表面结构。研究发现,Cu、Ce元素配合后的CuCeOx/TiO2催化剂氧化活性明显好于单独含Cu、Ce的催化剂,当Cu、Ce摩尔比为Cu:Ce=1∶2时,CuCeOx/TiO2催化剂氧化活性最好,在NO浓度500×10-6,O210%,空速为24 000 h-1,350℃时,NO氧化度为0.62;添加Mn元素可以提高CuCeOx/TiO2催化剂低温氧化活性,250℃时,MnCuCe/Ti-3和MnCuCe/Ti-5催化剂氧化度为0.53和0.69,300℃时,MnCuCe/Ti-3和MnCuCe/Ti-5催化剂氧化度均为0.76;此外,实验还研究了NO在MnCuCe/Ti-3催化剂上反应的动力学方程。  相似文献   

10.
微量NO2对厌氧氨氧化甲烷化反硝化耦合影响的动力学分析   总被引:1,自引:0,他引:1  
采用批试验方法,研究微量 NO2对颗粒污泥厌氧氨氧化、甲烷化和反硝化耦合的影响.基于 Haldane 模型建立了厌氧氨氧化的 NO2 强化函数,估计了强化函数中的最大强化系数(30.55)、NO2 半饱和常数(1.96 mg/L)、NO2 抑制常数(0.0082 mg/L)和基础速率系数(0.0314).微量 NO2 对甲烷化和反硝化动力学可用反竞争性抑制动力学方程进行描述.甲烷化的最大比乙酸盐去除速率为0.15 mg COD/(mg VSS·h),乙酸盐半饱和常数为395 mg COD/L,NOz抑制系数为0.623 mg/L.反硝化的亚硝酸盐氮最大去除速率 0.00685 h-1,亚硝酸盐氮半饱和常数0.214 mg/L,NO2 抑制系数为22.4 mg/L.试验中大部分的 NOx 气体物质出现损失.  相似文献   

11.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

12.
Chang DJ  Chen IP  Chen MT  Lin SS 《Chemosphere》2003,52(6):943-949
Wet air oxidation of a prepared reactive dye solution was performed to assess the efficacy of CoAlPO(4)-5 and CeO(2) as catalysts in the reaction. Via adsorption and oxidation of dye, CoAlPO(4)-5 effectively decreased American Dye Manufacturers Institute and chemical oxygen demand (COD) values in the dye solution. At a reaction temperature of 135 degrees C and an applied pressure of 1.0 MPa, color and COD removal were as high as 95% and 90%, respectively, after 2 h. Active sites on the outer surface of CoAlPO(4)-5 are responsible for adsorption and decomposition of dye while active sites in the pores dominate further destruction and oxidation of intermediate products. Since the outer surface only represents a minor part of the total surface, the color removal does not increase appreciably with loading of CoAlPO(4)-5. The CeO(2) catalyst, calcined from cerium chloride under high thermal impact (type A CeO(2)) was very effective in removing color and COD from the solution. This catalyst demonstrated near 100% color removal at temperatures above 135 degrees C and the COD removal could be above 95% at 165 degrees C. With both CoAlPO(4)-5 and CeO(2) catalysts, COD rose and then fell back during the reaction, a feature typical of a consecutive reaction. In contrast to prepared CeO(2), a commercial CeO(2) did not exhibit any catalytic ability for the removal of color and COD. The durability of both CoAlPO(4)-5 and prepared CeO(2) is considered to be fair.  相似文献   

13.
Seol Y  Javandel I 《Chemosphere》2008,72(4):537-542
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.  相似文献   

14.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).  相似文献   

15.
厌氧生物技术能在无氧条件下,通过厌氧微生物的新陈代谢将废水中的有机物转化为无机物,同时产生具有能源回收价值的甲烷,并减少温室气体(CO2)的排放,符合节能环保的原则和发展趋势.在回顾厌氧技术以及厌氧反应器发展的基础上,从现代厌氧反应器的发展理念角度分析了新型厌氧反应器-降流式厌氧悬浮填料床(DASB)的工艺特性.降流式厌氧悬浮填料床在生物量的保持、微生物的多级多相和推流流态等方面较好地符合了新型现代厌氧反应器的发展要求,结构、运行简单,具有较好的处理效果,是中国农村污水处理或预处理的较佳选择.  相似文献   

16.
The photo-Fenton reaction of an organophosphorus insecticide, dimethoate (O,O-dimethyl methylcarbamoylmethyl phosphorodithioate), was studied by following the identification and determination of the decomposition products and the total carbon removal rate. The reactions were performed in a batch recycle reactor, at room temperature, using UV radiation, H2O2 as oxidant, and FeCl3 x 6H2O as catalyst. The oxidation results were determined with a total organic carbon (TOC) analyzer and ion chromatography. The presence of reaction products was identified by gas chromatography-mass spectrometry (GC-MS). Apart from the sulfate, phosphate, and ammonium ions, the presence of dimethyl phosphite, N-methyl-acetamide, and formic acid was also detected. Excess of H2O2 concentration did not influence the reaction rate. The expression for the total carbon removal was assessed and the TOC removal rate constants were calculated.  相似文献   

17.
Liou RM  Chen SH  Hung MY  Hsu CS  Lai JY 《Chemosphere》2005,59(1):117-125
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.  相似文献   

18.
This paper investigated sulfadiazine oxidation by the Fenton process under various reaction conditions. The reaction conditions tested in the experiments included the initial pH value of reaction solutions, and the dosages of ferrous ions and hydrogen peroxide. Under the reaction conditions with pH 3, 0.25 mM of ferrous ion and 2 mM of hydrogen peroxide, a removal efficiency of nearly 100% was achieved for sulfadiazine. A series of intermediate products including 4-OH-sulfadiazine/or 5-OH-sulfadiazine, 2-aminopyrimidine, sulfanilamide, formic acid, and oxalic acid were identified. Based on these products, the possible oxidation pathway of sulfadiazine by Fenton's reagent was proposed. The toxicity evaluation of reaction solutions showed increased antimicrobial effects following the Fenton oxidation process. The results from this study suggest that the Fenton oxidation process could remove sulfadiazine, but also increase solution toxicity due to the presence of more toxic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号