首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

2.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


3.
The objective was to assess head injury risks and kinematics of adult pedestrians and bicyclists in primary impact to the passenger cars and secondary impact to the ground using real world accident data and computer reconstructions of the accidents. For this purpose, a subsample of 402 pedestrians and 940 bicyclists from the GIDAS database, Germany, was used for the statistical analysis, from which 22 pedestrian and 18 bicyclist accidents were further selected for reconstruction. PC-Crash was used to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence, and thrown distance. These conditions were employed to identify the initial conditions in reconstruction in MADYMO program. A comparable analysis was conducted based on the results from accident analysis and computer reconstructions for the impact configurations and the resulting injury patterns of pedestrians and bicyclists in view of head injury risks. Differences in HIC, head-relative impact velocity, linear acceleration, maximum angular velocity and acceleration, contact force, thrown distance, Wrap Around Distance (WAD), and head contact time were evaluated. Injury risk curves were generated by using a logistic regression model for vehicle impact velocity. The results indicate that bicyclists suffered less severe injuries compared with severity of pedestrian injuries. In the selected samples, the AIS 2+ and AIS 3+ head injury risks for pedestrians are 50% probability at impact speed of 38.87 km/h and 54.39 km/h respectively, while for bicyclists at 53.66 km/h and 58.89 km/h respectively. The findings of high injury risks suggested that in the area with high frequency car-pedestrian accidents, the vehicle speed limit should be 40 km/h, while in the area with high frequency car-cyclist accidents the vehicle speed limit should be 50 km/h.  相似文献   

4.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

5.
Objectives: The aim of this article is to report on the possible relationships between tramway front-end geometry and pedestrian injury risk over a wide range of possible tramway shapes.

Methods: To study the effect of tramway front-end shape on pedestrian injury metrics, accidents were simulated using a custom parameterized model of tramway front-end and pedestrian models available with the MADYMO multibody solver. The approach was automated, allowing the systematic exploration of tramway shapes in conjunction with 4 pedestrian sizes (e.g., 50th percentile male or M50).

Results: A total of 8,840 simulations were run, showing that the injury risk is more important for the head than for other body regions (thorax and lower extremities). The head of the M50 impacted the windshield of the tramway in most of the configurations. Two antagonist mechanisms affecting impact velocity of the head and corresponding head injury criterion (HIC) values were observed. The first is a trunk rotation resulting from an engagement of the lower body that can contribute to an increase in head velocity in the direction of the tram. The second is the loading of the shoulder, which can accelerate the upper trunk and head away from the windshield, resulting in lower impact velocities. Groups of design were defined based on 2 main parameters (windshield height and offset), some of which seem more beneficial than others for tramway design. The pedestrian size and tramway velocity (30 vs. 20?km/h) also affected the results.

Conclusions: When considering only the front-end shape, the best strategy to limit the risk of head injury due to contact with the stiff windshield seems to be to promote the mechanism involving shoulder loading. Because body regions engaged vary with the pedestrian size, none of the groups of designs performed equally well for all pedestrian sizes. The best compromise is achieved with a combination of a large windscreen offset and a high windscreen. Conversely, particularly unfavorable configurations are observed for low windshield heights, especially with a large offset. Beyond the front-end shape, considering the stiffness of the current windshields and the high injury risks predicted for 30?km/h, the stiffness of the windshield should be considered in the future for further gains in pedestrian safety.  相似文献   

6.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   

7.
This study was aimed at investigating the injury mechanism of pedestrian chests in collisions with passenger vehicles of various frontal shapes and examining the influence of the local structural stiffness on the chest injury risk by using the headform impact test at the chest contact area of the vehicle. Three simulations of vehicle to pedestrian collisions were conducted using three validated pedestrian finite element (FE) models of three pedestrian heights of 177 (AM50th), 165 and 150 cm and three FE vehicles models representing a one-box vehicle, a minicar and a medium car. The validity of the vehicle models was evaluated by comparing the headform acceleration against the measured responses from headform impact tests. The chest impact kinematics and the injury mechanisms were analyzed in terms of the distribution of the von Mises stress of the ribcage and in terms of the chest deflections. The chest contact locations on the front panel and the bonnet top were identified in connection to the causation of rib fractures. The risk of rib fractures was predicted by using the von Mises stress distribution. The headform impact tests were carried out at the chest contact area on the front panel and bonnet to examine the safety performance with respect to pedestrian chest protection. In simulations of the one-box vehicle to pedestrian collisions, the chest was struck directly by the frontal structure at a high velocity and deformed substantially, since a shear force was generated by the stiff windshield frame. The acceleration of the headform was related to the rib deflections. The injury threshold of the ribcage deflection (42 mm) corresponded to the headform average acceleration of 68 G. In the minicar collision, the chest was struck with the bonnet top and cowl area at a low velocity, and the deformation was small due to the distributed contact force between the chest and the bonnet top. Besides, the ribcage deformation was too small for bridging a relation between the headform accelerations and rib deflections. In the medium car collision, the deformation mode of the chest was similar to that in the minicar collision. The chest collided with the bonnet top at a low velocity and deformed uniformly. The deflection of the ribs had an observable correlation with the headform accelerations measured in the headform impact tests. The frontal shape of a vehicle has a large influence on a pedestrian’s chest loadings, and the chest deformation depends on the size of the pedestrian and the stiffness of the vehicle. The one-box passenger vehicle causes a high chest injury risk. The headform impactor test can be utilized for the evaluation of the local stiffness of a vehicle’s frontal structure. The reduction of the headform acceleration is an effective measure for pedestrian chest protection for specific shapes of vehicles by efficacy in modifying the local structural stiffness.  相似文献   

8.
Background: There is a need for routine estimates of injury recovery costs from pedestrian collisions using hospital separation records for economic evaluations.

Objective: To estimate the cost of injury recovery following pedestrian–vehicle collisions using the personal injury recover cost (PIRC) equation using key demographic and injury characteristics.

Method: An estimation of the costs of on-road pedestrian–vehicle collisions involving individuals who were injured and hospitalized in New South Wales (NSW), Australia, from 2002 to 2011 using the PIRC equation. The PIRC estimates individual injury recovery costs and does not include costs associated with property damage, vehicle repair, or rescue services. Individual recovery costs associated with severe traumatic brain injury (TBI) were estimated. The injured individual's mean, median, and total injury recovery costs are described for key demographic, injury, and crash characteristics.

Results: There were 9,781 pedestrians who were injured, costing an estimated total of $2.4 billion in personal injury recovery costs, an annual cost of $243 million. Males had a total injury recovery cost 1.7 times higher than females. The median injury recovery cost decreased with increasing age. TBI ($248,491) and spinal cord and vertebral column injuries ($264,103) had the highest median injury recovery costs for the body region of the most severe injury. TBI accounted for 22.6% of the total injury recovery costs for the most severe injury sustained. Just over one third of pedestrians sustained 4 or more injuries, with a median cost of $243,992, which was 1.6 times higher than the cost for a pedestrian who sustained a single injury ($153,682).

Conclusions: Personal injury recovery costs following pedestrian–vehicle collisions where a pedestrian is injured are substantial in NSW. The PIRC equation enables the economic cost burden of road traffic injury to be calculated using hospital separation data. The PIRC enables comprehensive personal injury recovery costs to be estimated and would aid in economic evaluations of preventive strategies in road safety.  相似文献   


9.
OBJECTIVE: To evaluate if precrash vehicle movement is associated with the severity of pedestrian injury. METHODS: We used comprehensive information on pedestrian, vehicle, and injury-related characteristics gathered in the Pedestrian Crash Data Study (PCDS), conducted by the National Highway Traffic Safety Administration (NHTSA) (1994-1998). The odds ratio of severe injuries (injury severity score >/= 15) and crash fatality rate for right- and left-turn collisions at intersection compared with straight vehicle movement were compared using a logistic regression model and taking into consideration the type of vehicle and age of the pedestrians as potential effect modifiers. Later we evaluated the intermediate effect of impact speed on the association by adding it to the logistic regression model. RESULTS: Of 255 collisions eligible for this analysis, the proportion of pedestrian hit during straight movement, right turns, and left turns were 48%, 32%, and 10%, respectively. Sixty percent of the pedestrians in left-turn crashes and 67% of them in right-turn collisions were hit from their left side. For straight movements the pedestrians were equally likely to be struck beginning from the left or right side of the street.After adjustment for pedestrian's age, vehicle movement was a significant predictor of severe injuries (p < 0.0001) and case fatality (p = 0.003). The association between vehicle precrash movement and severe injuries (p = 0.551) and case fatality (p = 0.912) vanished after adjusting for impact speed. This indicated that the observed association was probably the result of the difference in impact speed and not the precrash movement of the vehicle. CONCLUSION: Pedestrian safety interventions that aim at environmental modifications, such as crosswalk repositioning, might be the most efficient means in reducing right- or left-turn collisions at intersection, while pedestrians' behavioral modifications should be the priority for alleviating the magnitude of the collisions that happen in vehicles' straight movements.  相似文献   

10.
Objective: In previous research, a tool chain to simulate vehicle–pedestrian accidents from ordinary driving state to in-crash has been developed. This tool chain allows for injury criteria-based, vehicle-specific (geometry, stiffness, active safety systems, etc.) assessments. Due to the complex nature of the included finite element analysis (FEA) models, calculation times are very high. This is a major drawback for using FEA models in large-scale effectiveness assessment studies. Therefore, fast calculating surrogate models to approximate the relevant injury criteria as a function of pedestrian vehicle collision constellations have to be developed.

Method: The development of surrogate models for head and leg injury criteria to overcome the problem of long calculation times while preserving high detail level of results for effectiveness analysis is shown in this article. These surrogate models are then used in the tool chain as time-efficient replacements for the FEA model to approximate the injury criteria values. The method consists of the following steps: Selection of suitable training data sets out of a large number of given collision constellations, detailed FEA calculations with the training data sets as input, and training of the surrogate models with the FEA model's input and output values.

Results: A separate surrogate model was created for each injury criterion, consisting of a response surface that maps the input parameters (i.e., leg impactor position and velocity) to the output value. In addition, a performance test comparing surrogate model predictions of additional collision constellations to the results of respective FEA calculations was carried out. The developed method allows for prediction of injury criteria based on impact constellation for a given vehicle. Because the surrogate models are specific to a certain vehicle, training has to be redone for a new vehicle. Still, there is a large benefit regarding calculation time when doing large-scale studies.

Conclusion: The method can be used in prospective effectiveness assessment studies of new vehicle safety features and takes into account specific local features of a vehicle (geometry, stiffness, etc.) as well as external parameters (location and velocity of pedestrian impact). Furthermore, it can be easily extended to other injury criteria or accident scenarios; for example, cyclist accidents.  相似文献   

11.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

12.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

13.
Objective: This study aims to investigate the contributing factors to secondary collisions and the effects of secondary collisions on injury severity levels. Manhattan, which is the most densely populated urban area of New York City, is used as a case study. In Manhattan, about 7.5% of crash events become involved with secondary collisions and as high as 9.3% of those secondary collisions lead to incapacitating and fatal injuries.

Methods: Structural equation models (SEMs) are proposed to jointly model the presence of secondary collisions and injury severity levels and adjust for the endogeneity effects. The structural relationship among secondary collisions, injury severity, and contributing factors such as speeding, alcohol, fatigue, brake defects, limited view, and rain are fully explored using SEMs. In addition, to assess the temporal effects, we use time as a moderator in the proposed SEM framework.

Results: Due to its better performance compared with other models, the SEM with no constraint is used to investigate the contributing factors to secondary collisions. Thirteen explanatory variables are found to contribute to the presence of secondary collisions, including alcohol, drugs, inattention, inexperience, sleep, control disregarded, speeding, fatigue, defective brakes, pedestrian involved, defective pavement, limited view, and rain. Regarding the temporal effects, results indicate that it is more likely to sustain secondary collisions and severe injuries at night.

Conclusions: This study fully investigates the contributing factors to secondary collisions and estimates the safety effects of secondary collisions after adjusting for the endogeneity effects and shows the advantage of using SEMs in exploring the structural relationship between risk factors and safety indicators. Understanding the causes and impacts of secondary collisions can help transportation agencies and automobile manufacturers develop effective injury prevention countermeasures.  相似文献   


14.
Objective: The objective of this study was to compare and evaluate the difference in head kinematics between the TNO and THUMS models in pedestrian accident situations.

Methods: The TNO pedestrian model (version 7.4.2) and the THUMS pedestrian model (version 1.4) were compared in one experiment setup and 14 different accident scenarios where the vehicle velocity, leg posture, pedestrian velocity, and pedestrian's initial orientation were altered. In all simulations, the pedestrian model was impacted by a sedan. The head trajectory, head rotation, and head impact velocity were compared, as was the trend when various different parameters were altered.

Results: The multibody model had a larger head wrap-around distance for all accident scenarios. The maximum differences of the head's center of gravity between the models in the global x-, y-, and z-directions at impact were 13.9, 5.8, and 5.6 cm, respectively. The maximum difference between the models in head rotation around the head's inferior–superior axis at head impact was 36°. The head impact velocity differed up to 2.4 m/s between the models. The 2 models showed similar trends for the head trajectory when the various parameters were altered.

Conclusions: There are differences in kinematics between the THUMS and TNO pedestrian models. However, these model differences are of the same magnitude as those induced by other uncertainties in the accident reconstructions, such as initial leg posture and pedestrian velocity.  相似文献   


15.
Abstract

Objective: Traffic fatalities among motorcycle users are intolerably high in Thailand. They account for 73% of the total number of road fatalities. Children are also among these victims. To improve countermeasures and design of protection equipment, understanding the biomechanics of motorcycle users under impact conditions is necessary. The objective of this work is to analyze the overall kinematics and injuries sustained by riders and child pillion passengers in various accident configurations.

Methods: Motorcycle accident data were analyzed. Common accident scenarios and impact parameters were identified. Two numerical approaches were employed. The multibody model was validated with a motorcycle crash test and used to generate possible accident cases for various impact conditions specified to cover all common accident scenarios. Specific impact conditions were selected for detailed finite element analysis. The finite element simulations of motorcycle-to-car collisions were conducted to provide insight into kinematics and injury mechanisms.

Results: Global kinematics found when the motorcycle’s front wheel impacts a car (config-MC) highlighted the translation motion of both the rider and passenger toward the impact position. The rider’s trunk impacted the handlebar and the head either impacted the car or missed. The hood constituted the highest head impact occurrence for this configuration. The child mostly impacted the rider’s back. Different kinematics were found when car impacted the lateral side of the motorcycle (config-CM). Upper bodies of both rider and child were laterally projected toward the car front. The windshield constituted the highest proportion of head impacts. The hood and A-pillar recorded a moderate proportion. The rider in finite element simulations with config-MC experienced high rib stress, lung strain, and pressure beyond the injury limit. A high head injury criterion was observed when the head hit the car. However, the simulation with config-CM exhibited high lower extremities stress and lung pressure in both occupants. Hyperextension of the rider’s neck was observed. The cumulative strain damage measure of the child’s brain was higher than the threshold for diffuse axonal injury (DAI).

Conclusions: This study revealed 2 kinematics patterns and injury mechanisms. Simulations with config-MC manifested a high risk of head and thorax injury to the rider but a low risk of severe injury to the child. Thorax injury to the rider due to handlebar impact was only found in simulations with config-MC. However, a high risk of skull, lower extremity, brain, and neck injuries were more pronounced for cases with config-CM. A high risk of DAI was also noticed for the child. In simulations with config-CM the child exhibited a higher risk of severe injury.  相似文献   

16.
Abstract

Objectives: With regard to the pediatric population involved in vehicle side impact collisions, epidemiologic data can be used to identify specific injury-producing conditions and offer possible safety technology effectiveness through population-based estimates. The objective of the current study was to perform a field data analysis to investigate injury patterns and sources of injury to 4- to 10-year-olds in side and oblique impacts to determine the potential effect of updated side impact regulations and airbag safety countermeasures.

Methods: The NASS-CDS, years 1991 to 2014, was analyzed in the current study. The Abbreviated Injury Scale (AIS) 2005–Update 2008 was used to determine specific injuries and injury severities. Injury distributions were examined by body region as specified in the AIS dictionary and the Maximum AIS (MAIS). Children ages 4 to 10 were examined in this study. All occupant seating locations were investigated. Seating positions were designated by row and as either near side, middle, or far side. Side impacts with a principal direction of force (PDOF) between 2:00 and 4:00 as well as between 8:00 and 10:00 were included. Restraint use was documented only as restrained or unrestrained and not whether the restraint was being used properly. Injury distribution by MAIS, body region, and source of injury were documented. Analysis regarding occupant injury severity, body region injured, and injury source was performed by vehicle model year to determine the effect of updated side impact testing regulation and safety countermeasures. Because the aim of the study was to identify the most common injury patterns and sources, only unweighted data were analyzed.

Results: Main results obtained from the current study with respect to 4- to 10-year-old child occupants in side impact were that a decrease was observed in frequency of MAIS 1–3 injuries; injuries to the head, face, and extremities; as well as injuries caused by child occupant interaction with the vehicle interior and seatback support structures in 1998 model year passenger cars and newer.

Conclusions: Results from this study could be useful in design advances of pediatric anthropomorphic test devices, child restraints, as well as vehicles and their safety countermeasure systems.  相似文献   

17.
Objective: Understanding pedestrian injury trends at the local level is essential for program planning and allocation of funds for urban planning and improvement. Because we hypothesize that local injury trends differ from national trends in significant and meaningful ways, we investigated citywide pedestrian injury trends to assess injury risk among nationally identified risk groups, as well as identify risk groups and locations specific to Baltimore City.

Methods: Pedestrian injury data, obtained from the Baltimore City Fire Department, were gathered through emergency medical services (EMS) records collected from January 1 to December 31, 2014. Locations of pedestrian injuries were geocoded and mapped. Pearson's chi-square test of independence was used to investigate differences in injury severity level across risk groups. Pedestrian injury rates by age group, gender, and race were compared to national rates.

Results: A total of 699 pedestrians were involved in motor vehicle crashes in 2014—an average of 2 EMS transports each day. The distribution of injuries throughout the city did not coincide with population or income distributions, indicating that there was not a consistent correlation between areas of concentrated population or concentrated poverty and areas of concentrated pedestrian injury. Twenty percent (n = 138) of all injuries occurred among children age ≤14, and 22% (n = 73) of severe injuries occurred among young children. The rate of injury in this age group was 5 times the national rate (Incident Rate Ratio [IRR] = 4.81, 95% confidence interval [CI], [4.05, 5.71]). Injury rates for adults ≥65 were less than the national average.

Conclusions: As the urban landscape and associated pedestrian behavior transform, continued investigation of local pedestrian injury trends and evolving public health prevention strategies is necessary to ensure pedestrian safety.  相似文献   


18.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

19.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

20.
Objectives: Each year, pedestrian injuries constitute over 40% of all road casualty deaths and up to 60% of all urban road casualty deaths in Ghana. This is as a result of the overwhelming dependence on walking as a mode of transport in an environment where there are high vehicular speeds and inadequate pedestrian facilities. The objectives of this research were to establish the (1) impact of traffic calming measures on vehicle speeds and (2) association between traffic calming measures and pedestrian injury severity in built-up areas in Ghana.

Method: Vehicle speeds were unobtrusively measured in 38 selected settlements, including 19 with traffic calming schemes and 19 without. The study design used in this research was a matched case–control. A regression analysis compared case and control casualties using a conditional logistic regression.

Results: Generally, the mean vehicle speeds and the proportion of vehicles exceeding the 50?km/h speed limit were significantly lower in settlements that have traffic calming measures compared to towns without any traffic calming measures. Additionally, the proportion of motorists who exceeded the speed limit was 30% or less in settlements that have traffic calming devices and the proportion who exceeded the speed limit was 60% or more in towns without any traffic calming measures. The odds of pedestrian fatality was significantly higher in settlements that have no traffic calming devices compared to those that have (odds ratio [OR]?=?1.98; 95% confidence interval, 1.09–4.43). The protective effects of a traffic calming scheme that has a speed table was notably higher than those where there were no speed tables.

Conclusion: It was clearly evident that traffic calming devices reduce vehicular speeds and, thus, the incidence and severity of pedestrian injuries in built-up areas in Ghana. However, the fact that they are deployed on arterial roads is increasingly becoming a road safety concern. Given the emerging safety challenges associated with speed calming measures, we recommend that their use be restricted to residential streets but not on arterial roads. Long-term solutions for improving pedestrian safety proposed herein include bypassing settlements along the highways to reduce pedestrians’ exposure to traffic collisions and adopting a modern way of enforcement such as evidence-based laser monitoring in conjunction with a punishment regime that utilizes the demerit points system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号