首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Boege K 《Ecology》2010,91(9):2628-2637
Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological conditions.  相似文献   

2.
Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the appropriate morphological and physiological traits to invade. In contrast, biotic resistance reduces invasibility only in more benign environments and is best predicted by the abundance, rather than diversity, of neighbors. These results suggest that stressful environments are not likely to be invaded by most exotic species. However, species, such as H. marinum, that are able to invade these habitats require careful management, especially since these environments often harbor rare species and communities.  相似文献   

3.
Herbivory is now recognized as an important structuring agent in seagrass meadows but the attack pattern and tissue damage of consumers are highly variable. Nutritional preferences of herbivores and/or easy access to resources may cause differences in biomass loss among tissues that damage the plant in functionally distinctive ways. The two main Mediterranean herbivores, the fish Sarpa salpa (L.) and the sea urchin Paracentrotus lividus (Lmk.), remove higher amounts of intermediate and external shoot leaves, respectively. To test whether this selective feeding can have different consequences on the allocation patterns of nutrient within plants, we simulated the effect of both herbivores by clipping external and intermediate leaves (plus unclipped controls) of Posidonia oceanica (L.) and we measured plant tolerance in terms of shoot growth and leaf nutrient supply to new tissue using isotopic markers. As expected, control treatments displayed high carbon and nutrient supply from external leaves (83% of the total 15N and 84% of the total 13C incorporated by the shoot). When subjected to clipping, the remaining leaves enhanced carbon and nitrogen supply compared with the control by 16% of N and 36% of C—in the intermediate clipping—and by over 100% of N and 200% of C—in the external clipping—to compensate for the nutrient lost. However, only in the case of fish herbivory (intermediate clipping), enhanced supply alone was able to fully compensate for the nutrient losses. In contrast, this mechanism is not completely effective when external leaves are clipped (urchin herbivory). Yet, the consequences of this nutrient loss under sea urchin herbivory are not apparent from the nutrient content of the new tissue, suggesting that there are other sources of nitrogen income (uptake or reallocation from rhizomes). Our study does not only confirm the tolerance of P. oceanica to herbivory, but also constitutes the first evidence of leaf-specific, compensatory nutrient supply in seagrasses.  相似文献   

4.
Allocation of resources to growth and defense against herbivores crucially affects plant competitiveness and survival, resulting in a specific distribution of assimilates and defense compounds within plant individuals. Additionally, plants rarely experience stable environmental conditions, and adaptations to abiotic and biotic stresses may involve shifts in resistance to herbivores. We studied the allocation of phytochemicals in Brassica oleracea (Brussels sprouts) due to leaf age, drought stress and herbivore damage and assessed effects on two lepidopteran herbivores differing in diet breadth: the generalist Spodoptera littoralis and the specialist Pieris brassicae. Glucosinolates as secondary defense compounds and total nitrogen and carbon were quantified and linked to plant palatability, i.e., herbivore feeding preference. Herbivore responses were highly species-specific and partially related to changes in phytochemicals. Spodoptera littoralis preferred middle-aged leaves with intermediate levels of glucosinolates and nitrogen over young, glucosinolate and nitrogen rich leaves, as well as over old leaves, poor in glucosinolates and nitrogen. In contrast, P. brassicae preferred young leaves. Both species preferred severely drought-stressed plants to the well-watered control, although analyzed glucosinolate concentrations did not differ. Both S. littoralis and P. brassicae feeding induced an increase of indole glucosinolate levels, which may explain a reduced consumption of damaged plants detected for S. littoralis but not for P. brassicae. By revealing distinct, sometimes contrasting responses of two insect herbivores to within-plant and stress-mediated intraspecific variation in phytochemistry of B. oleracea, this study emphasizes the need to consider specific herbivore responses to understand and predict the interactions between herbivores and variable plants.  相似文献   

5.
Differing Effects of Cattle Grazing on Native and Alien Plants   总被引:5,自引:0,他引:5  
Abstract:   Habitat managers use cattle grazing to reduce alien plant cover and promote native species in California grasslands and elsewhere in the western United States. We tested the effectiveness of grazing as a restoration method by examining the effects of herbivory on native and alien plants. At Carrizo Plain National Monument, California, we surveyed native and alien species cover in adjacent grazed and ungrazed areas. We also established experimental plots in which plants were clipped or mulch (dead biomass) was removed. In addition, we clipped plants grown in pots and plants in the field that grew with and without competitors. Native species were negatively affected by clipping in 1999, 2000, and 2001, whereas alien species were unaffected. In the experimental field plots, the European annual forb Erodium cicutarium compensated in growth and reproduction following simulated herbivory. In contrast, growth and reproduction of the native perennial bunchgrass Poa secunda were reduced 1 year after clipping. In pots, E. cicutarium overcompensated and grasses undercompensated. In the field, European grasses were unaffected by the removal of competitors. It is unclear by what mechanism E. cicutarium was able to compensate, but the ability may be related to its basal rosette growth form and indeterminately growing inflorescences. The native California grassland community assembled in the absence of grazing herds, whereas invasive European species have been exposed to grazing for centuries. It may be that these invaders have adaptations that better enable them to recover from grazing. In the grassland we studied, the strategy of livestock grazing for restoration is counterproductive. It harms native species and promotes alien plant growth.  相似文献   

6.
Abstract:  Local species diversity of insect herbivores feeding on rainforest vegetation remains poorly known. This ignorance limits evaluation of species extinction patterns following various deforestation scenarios. We studied leaf-chewing insects feeding on 59 species of woody plants from 39 genera and 18 families in a lowland rainforest in Papua New Guinea and surveyed all plants with a stem diameter at breast height of ≥5 cm in a 1-ha plot within the same area. We used two extrapolation methods, based on randomized species-accumulation curves, to combine these two data sets and estimate the number of species of leaf-chewing herbivores feeding on woody plants from the 1-ha area. We recorded 58,483 feeding individuals from 940 species of leaf-chewing insects. The extrapolation estimated that there were 1567–2559 species of leaf-chewing herbivores feeding on the 152 plant species from 97 genera and 45 families found in 1 ha of the forest. Most of the herbivore diversity was associated with plant diversity on the familial and generic levels. We predicted that, on average, the selection of 45 plant species each representing a different family supported 39% of all herbivore species, the 52 plant species each representing a different additional genus from these families supported another 39% of herbivore species, and the remaining 55 plant species from these genera supported 22% of herbivore species. Lepidoptera was the most speciose taxon in the local fauna, followed by Coleoptera and orthopteroids (Orthoptera and Phasmatodea). The ratio of herbivore to plant species and the estimated relative species richness of the Lepidoptera, Coleoptera, and orthopteroids remained constant on the spatial scale from 0.25 to 1 ha. However, the utility of local taxon-to-taxon species ratios for extrapolations to geographic scales requires further study.  相似文献   

7.
The disruption of mutualisms between plants and mycorrhizal fungi is a potentially powerful mechanism by which invasives can negatively impact native species, yet our understanding of this mechanism's role in exotic species invasion is still in its infancy. Here, we provide several lines of evidence indicating that invasive tamarisk (Tamarix sp.) negatively affects native cottonwoods (Populus fremontii) by disrupting their associations with arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. At a field site in the early stages of tamarisk invasion, cottonwoods with tamarisk neighbors had reduced EM colonization and altered EM fungal community composition relative to cottonwoods with native neighbors, leading to reductions in EM propagule abundance in the soil beneath tamarisk. Similarly, AM colonization of cottonwoods was reduced with a tamarisk neighbor, but there were no significant changes in AM fungal spore communities or propagule abundance. Root colonization by nonmycorrhizal fungi, including potential pathogens, was higher in cottonwoods with tamarisk neighbors. A greenhouse experiment in which AM and EM inoculation and plant neighbor were manipulated in a fully factorial design showed that cottonwoods benefited from mycorrhizas, especially EM, in terms of shoot biomass when grown with a conspecific, but shoot biomass was similar to that of nonmycorrhizal controls when cottonwoods were grown with a tamarisk neighbor. These results are partially explained by a reduction in EM but not AM colonization of cottonwoods by a tamarisk neighbor. Tamarisk neighbors negatively affected cottonwood specific leaf area, but not chlorophyll content, in the field. To pinpoint a mechanism for these changes, we measured soil chemistry in the field and the growth response of an EM fungus (Hebeloma crustuliniforme) to salt-amended media in the laboratory. Tamarisk increased both NO3- concentrations and electrical conductivity 2.5-fold beneath neighboring cottonwoods in the field. Salt-amended media did not affect the growth of H. crustuliniforme. Our findings demonstrate that a nonnative species, even in the early stages of invasion, can negatively affect a native species by disrupting its mycorrhizal symbioses. Some of these changes in mycorrhizal fungal communities may remain as legacy effects of invasives, even after their removal, and should be considered in management and restoration efforts.  相似文献   

8.
Vocal signaling can be an important component of vertebrate communication during social interactions. If vocalizations vary among individuals but are consistent within a given individual, they may be used to discriminate among individuals. In many species, territorial males use vocalizations to discriminate between neighbors and strangers and either respond more aggressively toward strangers relative to neighbors (“dear enemy” effect) or they respond more aggressively toward neighbors relative to strangers (“nasty neighbor” effect). In the greater prairie-chicken (Tympanuchus cupido), male vocalizations are an integral part of the display males produce on leks. We investigated whether male greater prairie-chickens discriminate among familiar individuals on their own territory, familiar individuals outside their normal territory and strangers from a nearby lek. Vocal characteristics varied among males, suggesting that vocalizations may potentially be used by prairie-chickens to identify individuals. Males responded to playback of prairie-chicken calls by vocalizing at a faster rate and approaching the playback speaker, but did not vary in their response to the vocalizations based on the identity of the caller. Our results suggest that variation is present among the vocalizations of individual male greater prairie-chickens, but males do not appear to discriminate among familiar individuals and strangers based solely on their “boom” vocalizations. Greater prairie-chicken vocalization likely functions as a way of announcing that a territory is occupied and defended, but it may also serve as a way of advertising to conspecifics or as a signal that is secondary to other forms of communication.  相似文献   

9.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

10.
Long JD  Mitchell JL  Sotka EE 《Ecology》2011,92(1):180-188
Intraspecific variation in the strength of inducible plant defenses plays a central role in the interactions between plants and herbivores. Studies of this variation are typically conducted in the greenhouse or laboratory rather than the field. We simultaneously manipulated densities of local consumers in the field within Maine and South Carolina populations of the smooth cordgrass Spartina alterniflora. South Carolina, but not Maine, plants induced resistance when grazed by local consumers. South Carolina populations of Littoraria snails and planthoppers colonized control more than previously grazed South Carolina plants, and Littoraria snails consumed more control than previously grazed plants. The inducible feeding deterrents in South Carolina plants appear to be water soluble, but not phenolic based. In contrast, grazed and control plants from Maine populations did not differ in attractiveness or palatability to Maine consumers. Thus, inducible plant responses by South Carolina plants had a strong effect on the South Carolina consumer community, but no analogous effect occurred in Maine. Field experiments are a powerful approach to detecting the strength of inducible plant resistance and its impacts on local consumers, which in this case were shown to vary with location.  相似文献   

11.
Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had > 40% fewer seedlings, > 40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact. Using a complementary approach in unmanipulated plots in four forests, we used path analysis to test for a positive association between seedling diversity and herbivore damage on Piper species. In unmanipulated plots, for both generalist and specialist herbivores, our data were significant fits to the causal model that Piper herbivores decrease evenness and increase plant species richness, corroborating the experimental results. Because herbivores changed how individuals were apportioned among the species and families present (lower evenness), one interpretation of these associations between herbivores on Piper shrubs and local seedling richness is that high seedling mortality in dominant families allowed the colonization or survival of less common species. If interspecific or apparent competition allowed for a relative increase in species richness, then the Janzen-Connell hypothesis may extend its predictions to generalist seedling predators. We speculate that apparent competition may explain some of the deviations from neutral model predictions, especially at small scales.  相似文献   

12.
A phytochemical study of the invasive Eupatorium adenophorum indicated that the plant was rich in a phenolic compound o-coumaric acid (or 2-hydroxycoumaric acid). Biological investigations with the model plant Arabidopsis thaliana and crop plants showed that o-coumaric acid strongly inhibited seed germination, plant growth and root elongation, reduced the photosynthesis in old leaves, and induced the root cell death and the expression of genes related to senescence, oxidative stress, and systemic acquired resistance. The phytotoxic effects of o-coumaric acid exhibit selectivity between under- and above-ground parts of test plants and between E. adenophorum and other plants. These results indicate that o-coumaric acid is a potent toxin that might play an important role in the competition of E. adenophorum with its neighboring plants during its invasion and establishment.  相似文献   

13.
Plant uptake of inorganic and organic nitrogen: neighbor identity matters   总被引:5,自引:0,他引:5  
Miller AE  Bowman WD  Suding KN 《Ecology》2007,88(7):1832-1840
The importance of interspecific competition as a cause of resource partitioning among species has been widely assumed but rarely tested. Using neighbor removals in combination with 15N tracer additions in the field, we examined variation among three alpine species in the uptake of 15N-NH4+, 15N-NO3-, and 15N-13C-[2]-glycine in intact neighborhoods, when paired with a specific neighbor, and when all neighbors were removed. Species varied in the capacity to take up 15N-labeled NH4+, NO3-, and glycine in intact neighborhoods and in interspecific pairs. When interspecific neighbor pairs were compared with no neighbor controls, neighbors reduced 15N uptake in target species by as much as 50%, indicating competition for N. Furthermore, neighbor identity influenced the capacity of species to take up different forms of N. Thus, competition within interspecific neighbor pairs often caused reduced uptake of a particular form of N, as well as shifts to uptake of an alternative form of N. Such shifts in resource use as a result of competition are an implicit assumption in studies of resource partitioning but have rarely been documented. Our study suggests that plasticity in the uptake of different forms of N may be a mechanism by which cooccurring plants reduce competition for N.  相似文献   

14.
Inter- and intraspecies variations in host plant traits are presumably involved in many host shifts by insect herbivores, and elucidating the mechanisms involved in such shifts has been a crucial goal in insect-plant research for several decades. Here we propose that herbivore-induced evolutionary increases in host plant resistance may cause oligophagous insect herbivores to shift to other sympatric plants as currently preferred host plants become increasingly unpalatable. We tested this hypothesis in a system based on the perennial herb Filipendula ulmaria (Rosaceae), whose herbivory defense has become gradually stronger due to prolonged selection by Galerucella tenella (Coleoptera: Chrysomelidae) herbivory in a boreal archipelago. We show that Galerucella gradually increases its use of the alternative host plant Rubus arcticus (Rosaceae) in parallel to gradually increased resistance in Filipendula. Our results imply that, by driving the evolutionary increase in Filipendula resistance, Galerucella is also gradually making the original host species more unpalatable and thereby driving its own host-breadth enlargement. We argue that such self-inflicted "rent rises" may be an important mechanism behind host plant shifts, which in turn are believed to have preceded the speciation of many phytophagous insects.  相似文献   

15.
以抗禾谷孢囊线虫(Heterodera avenae Wollenweber,cereal cyst nematode,CCN)小麦品系‘E-10’和易感材料‘中国春’为材料,通过人工接种禾谷孢囊线虫二龄幼虫,并在接种线虫后测定根部防御酶苯丙氨酸转氨酶(PAL)和脂氧合酶(LOX)活力变化,研究抗感性材料对线虫侵染后防御酶的响应,以了解作物的抗虫机制.结果发现,‘E-10’和‘中国春’防御酶活力变化存在显著差异,‘E-10’在线虫侵染后6 h,LOX酶活增强,在24 h达到最大值,酶活变化比‘中国春’迅速,暗示‘E-10’启动线虫防御反应更为有效直接.此外,发现小麦在接种线虫后会引起邻近未接种植株根部防御酶活力变化.‘E-10’在接种线虫后12 h,其接触组未接种材料根部PAL酶活增加0.9倍,LOX酶活增加1.1倍,并且‘E-10’未接种植株的酶活变化比‘中国春’更迅速,幅度更剧烈.表明可能有某些气态或挥发性物质参与了小麦防御线虫侵染过程,并且这种现象在抗感材料间差异显著.使用茉莉酸甲酯处理‘E-10’和‘中国春’,小麦根部PAL和LOX酶活并未产生与接触接种线虫材料相一致的变化,表明该气态或挥发性物质并非茉莉酸甲酯.  相似文献   

16.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   

17.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

18.
Tit for tat among neighboring hooded warblers   总被引:4,自引:0,他引:4  
Summary The dear-enemy relationship of territorial songbirds could be mutually beneficial to neighbors, as males who recognize neighbors and reduce their responses to these neighbors would require less time and energy for territorial defense. In order for this relationship to be evolutionarily stable, this reduction in response to a neighbor must be conditional on reciprocal restraint by that neighbor. This study examined the possibility of such conditional responses in hooded warblers (Wilsonia citrina). Responses of territorial hooded warblers to playbacks of neighbors' songs from shared boundaries were measured before and after playbacks that simulated intrusions of those same neighbors (NNNN treatment) or strange birds (NSSN treatment) into the subjects' territories. Each male received both treatments separated by at least 8 days. Males increased their responses to playbacks of a neighbor's songs at the boundary after simulated intrusions of that same neighbor (NNNN) but did not increase their responses to such playbacks after simulated intrusions of strangers (NSSN). This increased response to a defecting neighbor suggests that the relationship between neighboring territorial hooded warblers is based on a conditional strategy like tit-for-tat.  相似文献   

19.
Lau JA  Strengbom J  Stone LR  Reich PB  Tiffin P 《Ecology》2008,89(1):226-236
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations.  相似文献   

20.
One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号